
FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 1 www.hcc-embedded.com

FAT File System

Implementation Guide

Version 3.31

All rights reserved. This document and the associated software are the sole property of HCC-Embedded Kft. Reproduction or
duplication by any means of any portion of this document without the prior written consent of HCC-Embedded Kft. is expressly
forbidden.

HCC-Embedded Kft. reserves the right to make changes to this document and to the related software at any time and without notice.
The information in this document has been carefully checked for its accuracy; however, HCC-Embedded Kft. makes no warranty
relating to the correctness of this document.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 2 www.hcc-embedded.com

Contents

1. System Overview... 6

1.1. TARGET AUDIENCE .. 6
1.2. SYSTEM STRUCTURE/SOURCE CODE.. 7
1.3. SOURCE FILE LIST.. 8

1.3.1. Standard Source Files... 8
1.3.2. Test Code Source Files ... 8
1.3.3. Checkdisk Source Files ... 8
1.3.4. Sample Driver Source Files .. 9

1.4. GETTING STARTED... 10
1.5. TESTING... 11

2. Porting – Step by Step Guide... 12
2.1. SYSTEM REQUIREMENTS.. 12
2.2. STACK REQUIREMENTS.. 12
2.3. REAL TIME REQUIREMENTS... 12
2.4. USER DEFINITIONS... 12
2.5. UNICODE SUPPORT... 13
2.6. DRIVES, PARTITIONS AND VOLUMES ... 14
2.7. LONG FILENAMES .. 15
2.8. MAXIMUM NUMBER OF VOLUMES AND REENTRANCY....................................... 16
2.9. MUTEX FUNCTIONS.. 16
2.10. MAXIMUM OPEN FILES .. 16
2.11. MAXIMUM TASKS AND CWD .. 17
2.12. CACHE SETUP AND OPTIONS.. 18

2.12.1. FAT Caching... 18
2.12.2. Write Caching ... 18
2.12.3. Directory Cache.. 18

2.13. FAT FREE CLUSTER BIT FIELD ... 19
2.14. MEMCPY AND MEMSET.. 19
2.15. MALLOC AND FREE.. 20
2.16. GET TIME... 20
2.17. GET DATE .. 20
2.18. LAST ACCESSED DATE.. 20
2.19. RANDOM NUMBER ... 21
2.20. SEPARATOR CHARACTER ... 21
2.21. FAST SEEKING.. 21

3. Drive Format ... 22
3.1. COMPLETELY UNFORMATTED .. 22
3.2. MASTER BOOT RECORD... 23
3.3. BOOT SECTOR INFORMATION ... 24

4. File API .. 26
4.1. FILE SYSTEM FUNCTIONS... 26
4.2. FUNCTION ERROR CODES .. 27
4.3. F_GETVERSION... 28
4.4. F_INIT .. 29
4.5. F_ENTERFS .. 30
4.6. F_RELEASEFS .. 31

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 3 www.hcc-embedded.com

4.7. F_INITVOLUME... 32
4.8. F_INITVOLUMEPARTITION .. 34
4.9. F_CREATEDRIVER... 35
4.10. F_RELEASEDRIVER ... 37
4.11. F_CREATEPARTITION.. 39
4.12. F_GETPARTITION.. 41
4.13. F_DELVOLUME ... 43
4.14. F_CHECKVOLUME... 44
4.15. F_GET_VOLUME_COUNT .. 45
4.16. F_GET_VOLUME_LIST .. 46
4.17. F_FORMAT.. 47
4.18. F_GETFREESPACE ... 49
4.19. F_SETLABEL ... 51
4.20. F_GETLABEL .. 52
4.21. F_GET_OEM.. 53
4.22. F_MKDIR .. 54
4.23. F_CHDIR ... 55
4.24. F_RMDIR .. 56
4.25. F_GETDRIVE ... 57
4.26. F_CHDRIVE... 58
4.27. F_GETCWD ... 59
4.28. F_GETDCWD... 60
4.29. F_RENAME ... 61
4.30. F_MOVE ... 62
4.31. F_DELETE... 63
4.32. F_FILELENGTH ... 64
4.33. F_FINDFIRST... 65
4.34. F_FINDNEXT ... 66
4.35. F_STAT... 67
4.36. F_SETTIMEDATE ... 68
4.37. F_GETTIMEDATE .. 69
4.38. F_SETATTR... 70
4.39. F_GETATTR .. 71
4.40. F_OPEN... 71
4.41. F_CLOSE... 74
4.42. F_FLUSH... 75
4.43. F_WRITE... 76
4.44. F_READ .. 77
4.45. F_SEEK... 77
4.46. F_TELL ... 78
4.47. F_EOF... 80
4.48. F_SETEOF ... 81
4.49. F_REWIND .. 82
4.50. F_PUTC... 83
4.51. F_GETC... 84
4.52. F_TRUNCATE.. 85
4.53. F_FTRUNCATE .. 86
4.54. F_GETLASTERROR .. 87

5. Unicode API... 88
5.1. UNICODE SPECIFIC FILE SYSTEM FUNCTIONS .. 88

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 4 www.hcc-embedded.com

5.2. F_WMKDIR ... 89
5.3. F_WCHDIR .. 90
5.4. F_WRMDIR ... 91
5.5. F_WGETCWD .. 92
5.6. F_WGETDCWD .. 93
5.7. F_WRENAME .. 94
5.8. F_WMOVE .. 95
5.9. F_WDELETE.. 96
5.10. F_WFILELENGTH .. 97
5.11. F_WFINDFIRST.. 98
5.12. F_WFINDNEXT .. 99
5.13. F_WSTAT.. 100
5.14. F_WSETTIMEDATE .. 101
5.15. F_WGETTIMEDATE ... 102
5.16. F_WSETATTR.. 103
5.17. F_WGETATTR ... 104
5.18. F_WOPEN.. 105
5.19. F_WTRUNCATE... 107

6. Driver Interface... 108
6.1. DRIVER INTERFACE FUNCTIONS... 108
6.2. XXX_INITFUNC... 110
6.3. XXX_GETPHY ... 112
6.4. XXX_READSECTOR... 113
6.5. XXX_READMULTIPLESECTOR ... 114
6.6. XXX_WRITESECTOR.. 115
6.7. XXX_WRITEMULTIPLESECTOR.. 116
6.8. XXX_GETSTATUS.. 117
6.9. XXX_RELEASE.. 118

7. Compact Flash Card... 119
7.1. OVERVIEW ... 119
7.2. PORTING TRUE IDE MODE .. 119

7.2.1. Files... 119
7.2.2. Hardware Porting... 119
7.2.3. Setting IDE Mode.. 120

7.3. FURTHER INFORMATION .. 120
8. MultiMediaCard/Secure Digital Card Driver.. 121

8.1. OVERVIEW ... 121
8.2. IMPLEMENTATION .. 121
8.3. PORTING THE SPI DRIVER.. 122

8.3.1. Further Information .. 123
9. Hard Disk Drive .. 124

9.1. OVERVIEW ... 124
9.1.1. Files... 124
9.1.2. Hardware Porting... 124

10. RAM Driver... 126
11. Using CheckDisk ... 128

11.1. FILES.. 128
11.2. BUILD OPTIONS.. 129
11.3. F_CHECKDISK... 130
11.4. MEMORY REQUIREMENTS.. 131

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 5 www.hcc-embedded.com

11.5. LOG FILE ENTRIES ... 132

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 6 www.hcc-embedded.com

1. System Overview

1.1. Target Audience

This guide is intended for use by embedded software engineers who have should have a
knowledge of the C programming language, standard file API's who wish to implement a
FAT12, FAT16 or FAT32 file system in any combination of RAM, Compact Flash Card,
MultiMediaCard, Hard Disk Drive or other device type.

Although every attempt has been made to make the system as simple to use as possible
the developer must understand the requirements of the system they are designing to get
the best practical benefit from the system.

HCC-Embedded offers hardware and firmware development consultancy to assist
developers with the implementation of a flash file system.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 7 www.hcc-embedded.com

1.2. System Structure/Source Code

The following diagram illustrates the structure of the file system software.

Figure 1, System Structure

RAM Drive
ramdrv.c

Compact
Flash Card

cfc_ide.c

MultiMedia
Card

mmc.c

Standard File API

 f_init f_enterFS f_releaseFS f_initvolume
 f_createdriver f_releasedriver f_checkvolume
 f_initvolumepartition f_seteof f_truncate f_putc
 f_getdrive f_rename f_open f_getc
 f_format f_chdrive f_delete f_close
 f_get_volume_count f_getcwd f_filelength f_write
 f_get_volume_list f_getdcwd f_findfirst f_read
 f_setlabel f_mkdir f_findnext f_seek
 f_getlabel f_chdir f_settimedate f_tell
 f_getversion f_rmdir f_gettimedate f_eof
 f_delvolume f_stat f_setattr f_rewind
 f_getfreespace f_getattr f_ftruncate
 f_flush

FAT File System

User Applications

Hard Disk Drive
hdd_ide.c

Common Interface
GetPhy()

GetStatus()
ReadSector()
WriteSector()

ReadSectorMultiple()
WriteSectorMultiple()

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 8 www.hcc-embedded.com

1.3. Source File List

The following is a list of all the source code files included in the file system.

1.3.1. Standard Source Files
/src/common

udefs.h - user definitions file
defs.h - external definition file
fat.c - fat short filename functions
fat.h - fat file system header
fwerr.h - error codes definitions
fat_lfn.c - alternative source file to fat.c for long filenames
common.c - common functions
common.h - common functions header
fat_m.c - fat file system reentrancy wrapper
fat_m.h - fat file header reentrancy header
port_f.c - routines that require OS specific modifications
port_f.h - header for port routines.
api_f.h - public definitions file

1.3.2. Test Code Source Files
/src/test/
test_f.c - Test source code for exercising the file system
test_f.h - Header file for test source code
testdrv_f.c - test driver for testing system
testdrv_f.h - header file for test driver
testport_f.c - porting file for test
testport_ram_f.c - porting fiel for RAM test

1.3.3. Checkdisk Source Files
/src/chkdsk/
chkdsk.c - check disk utility C source code
chkdsk.h - header file for checkdisk utility

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 9 www.hcc-embedded.com

1.3.4. Sample Driver Source Files
/src/ram/
ramdrv_f.c - RAM driver implementation
ramdrv_f.h - RAM driver header file

/src/cfc/arm/ ARM7 tested Compact Flash Drivers
cfc_ide.c - Compact Flash Card True IDE Driver
cfc_ide.h - Compact Flash Card True IDE Header
cfc_io.c - Compact Flash Card IO mode Driver
cfc_io.h - Compact Flash Card IO mode Header
cfc_mem.c - Compact Flash Card memory mode Driver
cfc_mem.h - Compact Flash Card memory mode Header

/src/cfc/mcf/ MCF5xxx tested Compact Flash Drivers
cfc_ide.c - Compact Flash Card True IDE Driver
cfc_ide.h - Compact Flash Card True IDE Header

/src/mmc/multi/ MMC/SD card, multiple interface drivers
drv.h - Header file for MMC/SD card driver
mmc.c - Generic MultiMediaCard driver
mmc.h - MultiMediaCard header
mmc_dsc.h - Card specific information header

/src/mmc/multi/arm/ ARM7 tested SPI drivers
drv.c - SPI driver for ARM7
drvs.c - Software driven SPI driver

/src/mmc/multi/mcf/ MCF5xxx tested SPI drivers
drv.c - SPI driver for MCF5xxx
drvs.c - Software driven SPI driver for MCF5xxxx

/src/mmc/single/ MMC/SD single interface drivers
drv.h - Header file for MMC/SD card driver
mmc.c - Generic MultiMediaCard driver
mmc.h - MultiMediaCard header
mmc_dsc.h - Card specific information header

/src/mmc/single/arm/ ARM7 tested SPI drivers
drv.c - SPI driver for ARM7
drvs.c - Software driven SPI driver

/src/mmc/single/mcf/ MCF5xxx tested SPI drivers
drv.c - SPI driver for MCF5xxx
drvs.c - Software driven SPI driver for MCF5xxxx

/src/hdd/mcf/ MCF5xxx tested HDD driver
hdd_ide.c - Hard Disk Drive IDE driver

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 10 www.hcc-embedded.com

hdd_ide.h - Hard Disk Driver header file

The developer should not normally modify the fat source files. These files contain all the
file system handling and maintenance including FATs, directories, formatting etc.

The port_f.c and port_f.h files need to be modified to conform to the target system the
developer is working with. The tasks required of the developer are straightforward and
ensure easy integration with any operating environment. Full guidance to this is given in
the Section 2.

The driver files are fully tested working driver examples. For any particular
implementation key parts of these must be changed to conform to the development
environment. In particular address mapping and IO port mapping must be done to
configure the driver to work with the developer’s hardware. The driver interface
functions are documented in Section 6.

The sample drivers are documented in Sections 7, 8, 9 and 10.

To implement a customized driver is straightforward. The developer should base any new
driver on the RAM driver - the simplest possible starting point.

1.4. Getting Started

To get your development started as efficiently as possible we recommend that the
developer follow the instructions in section RAM Driver to set up a RAM drive on their
target. This enables the developer to become familiar with the system and develop test
code without the need to worry about a new hardware interface.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 11 www.hcc-embedded.com

1.5. Testing

Supplied with the system is test code for exercising the system and ensuring that the file
system is working correctly. Most functionality of the file system is exercised with this
program including file read/write/append/seek/file content, directories and file
manipulation functions. To use the test program include test_f.c and test_f.h in your test
project. testdrv_f.c and testdrv_f.h contains a test driver which is a special ram drive
used for greater coverage test of the file system. testport_f.c contains functions which
need to be modified for the target environment (e.g. if printf is called with different
name). When testing a drive the F_FAT_MEDIA define in test_f.h should be set to that
required on your target e.g. for testing the RAM drive it should be changed to:

#define F_FAT_MEDIA F_FAT12_MEDIA

There is a #define for full coverage test called TEST_FULL_COVERAGE. This define
can be set to 1 if a full coverage test is needed. In this case testdrv_f.c must be included
into the project. If the target media device is to be tested, then full coverage test should
not be used because it needs some special function to simulate a variety of error
conditions. In this case use normal test instead of full coverage test.

void f_dotest(void) is called to execute the test code.

For all file system tests testport_f.c is needed. This file includes basic function for
powering the system on and off and for displaying test results. If a target device test is
requested, then f_initvolume() function call parameters must be modified in the
_f_poweron() function to use the correct driver. See the comments in the file to
understand how to do this.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 12 www.hcc-embedded.com

2. Porting – Step by Step Guide

2.1. System Requirements

The system is designed to be as open and portable as possible. No assumptions are made
about the functionality or behavior of the underlying operating system. For the system to
work at its best certain porting work should be done as outlined below. This is a
straightforward task for an experienced engineer.

2.2. Stack Requirements

The file system functions are always called in the context of the calling thread or task.
Naturally the functions require stack space and the developer should allow for this in
applications calling file system functions. Typically calls to the file system will use
<2Kbytes of stack. However, if long filenames are used then the stack size should be
increased to 4K but see Long Filenames section below.

2.3. Real Time Requirements

The bulk of the file system is code that executes without delay. There are exceptions at
the driver level where delays in writing to the physical media and in the communication
cause the system to wait on external events. The points at which this occur are
documented in the applicable driver sections and the developer should modify them to
meet the system requirements - either by implementing interrupt control of that event or
scheduling other parts of the system. Read the relevant driver section for details.

2.4. User Definitions

From release 2.70 a user definitions file has been included in the source tree to include all
the main user definitions. This is done to make the product upgrade task simpler so that
when a new release is provided this file should not be overwritten if you wish to retain
your previous settings.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 13 www.hcc-embedded.com

2.5. Unicode Support

From version 2.70 the support for 16-bit Unicode is provided.

Note: Unicode 7/8 are supported by the file system transparently. This additional
option is only required for Unicode16 support.

To support Unicode16 character sets the developer must uncomment the line:

/* #define HCC_UNICODE */

This will force any build to include the Unicode 16 API. This build will also force Long
Filename support (see next section) which is necessary for Unicode16 support.

With this build you may now use the Unocode16 API calls. Section 5 describes the API
functions that may be used with Unicode16 strings.

Use of Unicode16 implies that the host system has wchar (“wide character”) support or
an equivalent definition.

Using the Unicode16 system creates additional resource usage in the system because all
string and path accesses effectively use twice the space. Therefore it is recommended that
this option is only used if it is a requirement of your system to use Unicode16.

Note: To allow the file system to generate consistent short filenames then the user may
want to include character set conversion tables in to the code. There are two points in the
code where you must insert this conversion if required – these are in the _f_createlfn()
function in the fat_lfn.c module and marked with the comment:

/* here we can add …..

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 14 www.hcc-embedded.com

2.6. Drives, Partitions and Volumes

FAT provides functions for creating and managing multiple drives, partitions and
volumes.

First some definitions:

• A drive consists of a physical media which is controlled by a single driver.
Examples are a HDD or a Compact Flash Card

• All drives contain zero or more partitions – if the drive is not partitioned
then there is just a single volume on that drive. Normally for removable
media such as flash cards there are zero or one partitions on the card.

• On each partition may be added a single volume. A volume can exist on a
drive without partitions

The file system operates on volumes – all additional functions are provided to make the
volumes on the different drives and partitions appear as a set of volumes. i.e. A:, B: etc.

Note: the API function calls f_getdrive(), f_chdrive() and f_getdcwd() refer to
drive by name, because this is the convention, but are really references to
volumes.

If the developer does not require partitions to be created or deleted then the
f_initvolumepartition(), f_createdriver(), f_releasedriver() and f_createpartition()
functions should be left out of the system.

If multiple partitions are to be used then the developer should use these four functions to
create drivers for partitioned drives and to create partitions on those drives.

Partitions are created on a single volume, like on a HDD, and so a single driver is used to
access the volume even though there are multiple partitions on it. These volumes need to
be controlled by a single lock.

Note: Some operating systems will not recognize multiple partitions on a
removable media. It is “normal” to restrict the use of multiple partitions to fixed
drives. FAT created partitions are Windows XP compatible.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 15 www.hcc-embedded.com

2.7. Long Filenames

The system includes two main source files to choose between:

fat.c - contains file system without long filename support. If long filenames exist on the
media the system will ignore the long name part and use only the short name.

fat_lfn.c - contains file system with complete long filename support.

The long filename is optional because of the increase in system resources required to do
long filenames. In particular the stack sizes of applications which call the file system
must be increased and the amount of checking required is increased.

To choose between using the long filename version and the short use the

F_LONGFILENAME definition in udefs.h.

The maximum long filename space required by the standard is 260 bytes. As a
consequence each time a long filename is processed large areas of memory must be
available. The developer may, depending on their application, reduce the size of
F_MAXPATH and F_MAXLNAME (in udefs.h) to reduce the resource usage of the
system. The structure F_LFNINT must NOT be modified as this is used to process the
files on the media which may be created by other systems.

The most critical function for long filenames is the fn_rename function which must keep
two long filenames on the stack and additional structures for handling it. If this function
is not required for your application it is sensible to comment it out and this can
significantly reduce the stack requirements (by approximately 1K).

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 16 www.hcc-embedded.com

2.8. Maximum Number of Volumes and Reentrancy

The maximum number of volumes allowed by your system should be set in the
F_MAXVOLUME definition in udefs.h. Set this value to the maximum volumes that
will be available on the target system. (E.g. if only RAM drive is used set the value to 1,
if RAM drive and CF card drive then set this value to 2, etc).

Volumes are given drive letters as specified in the f_initvolume() function.

The system is designed such that access to each volume is entirely independent i.e. if an
operation is being performed on a volume then it does not block access to other volumes.

If your system has only a single task which accesses the file system then no changes to
port.c are required.

Each volume should be protected by a mutex mechanism to ensure that file access is safe.
A reentrancy wrapper is included in fat_m.c. The reentrancy wrapper routines call mutex
routines contained in port.c. These are general functions and should be replaced by the
routines provided by your operating system.

Note: The mutex routines supplied with the system are vulnerable to the classic
priority inversion problem which can only be resolved by the use of routines
specific to the target’s RTOS.

2.9. Mutex Functions

If reentrancy is required as described in the previous section then the following functions
in port.c must be implemented – normally provided by the host RTOS:

f_mutex_create() – called at volume initialization
f_mutex_delete() – called at volume deletion
f_mutex_get() – called when a mutex is required
f_mutex_put() – called when the mutex is released

Note: If the CAPI is used (i.e. F_CAPI_USED is defined in udefs.h) then these
mutex functions will be replaced by those of the CAPI. Consult the CAPI guide
for further information

2.10. Maximum Open Files

The maximum number of simultaneously open files allowed must be specified in the
udefs.h file. This is set in the F_MAXFILES definition. This is the total number of files
that may be simultaneously open across all volumes.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 17 www.hcc-embedded.com

2.11. Maximum Tasks and CWD

If more than a single task is allowed to access the file system then reentrancy and
maintenance of the current working directory must be considered.

Reentrancy is handled on a per volume basis and is documented in the sections above.

Within the standard API there is no support for the current working directory to be
maintained on a per caller basis. By default the system provides a single cwd which can
be changed by any user. This is maintained on a per volume basis.

An additional option has been provided which enables the file system to keep track of the
cwd on a per calling task basis. To use this option the developer must take the following
steps:

1. Set F_MAXTASK to the maximum number of tasks that can simultaneously
maintain access to the file system. This effectively creates a table of cwds for each
task.

2. Modify the function fn_gettaskID() in the port.c file to get a unique
identifier for the calling task.

3. Ensure that any task using the file system calls f_enterFS() before using any
other API calls – this ensures that the calling task is registered and the current
working directory can be maintained for it.

4. Ensure that any application using the file system calls f_releaseFS() with its
unique identifier to free that table entry for use by other applications.

Once this is done each caller will be logged as it acquires the semaphore, and a current
working directory will be associated with it. The caller must release this when it has
finished using the file system e.g. when the calling task is terminated. This frees the entry
for other tasks to use.

Note: If the CAPI is used (i.e. F_CAPI_USED is defined in udefs.h) then the
fn_gettaskID() function will be replaced by that in the CAPI. Consult the
CAPI guide for further information

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 18 www.hcc-embedded.com

2.12. Cache Setup and Options

The system includes two caching mechanisms to enhance the performance of the system;
these are FAT caching and write data caching.

2.12.1. FAT Caching
FAT caching enables the file system to read several sectors from the FAT in one access
so that when accessing the files the file system does not have to read new FAT sectors so
frequently. The FAT caching is arranged in blocks such that each block can cover
different areas of the FAT. The number of sectors that each block contains and the
number of blocks is configurable.

FAT caching requires additional RAM – 512 bytes per sector.

The following definitions are provided in udefs.h

#define FATCACHE_ENABLE

#ifdef FATCACHE_ENABLE
#define FATCACHE_BLOCKS 4 /*number of different FAT cache blocks*/
#define FATCACHE_READAHEAD 8 /* number of FAT sectors to read */
 /* to a block */
#define FATCACHE_SIZE (FATCACHE_BLOCKS*FATCACHE_READAHEAD)
#endif

Note: The additional RAM required for FAT caching is:

FATCACHE_BLOCKS*FATCACHE_READAHEAD*512

This default setting requires 16K of additional RAM.

2.12.2. Write Caching
The write cache defines the maximum number of sectors which can be written in one
operation from the caller’s data buffer. This is also dependent on there being contiguous
space available on the target drive. The write cache requires an F_POS structure (24
bytes) for each entry in the write cache. The main purpose of these structures is to be able
to wind back a write in the event of an error in writing.

The default setting for the write caching in udefs.h is:

#define WR_DATACACHE_SIZE 32

This will require 768 additional bytes of RAM.

2.12.3. Directory Cache
This can only be enabled if F_LONGFILENAME is defined. This can be enabled by
defining DIRCACHE_ENABLE in udefs.h. If this is enabled you must specify the
number of sectors to read ahead with DIR_CACHESIZE. This will allocate this number
of sectors of memory for directory caching (e.g. if set to 32; 16Kbytes of memory will be

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 19 www.hcc-embedded.com

allocated). Note also that the system will never read more than the size of a cluster into
this cache – therefore if there is no value in having a DIR_CACHESIZE greater than the
sectors per cluster of the target device.

2.13. Fat Free Cluster Bit Field

In the udefs.h there is a FATBITFIELD_ENABLE definition. If this is enabled then the
system will attempt to malloc a block to contain a bit table of free clusters. This table is
maintained by the file system and is used to accelerate searches for free clusters. This
makes a large difference to the write performance when writing to a large and full disk.

2.14. Memcpy and Memset

Supplied with the system are memcpy and memset functions.

It is recommended to re-define these to call versions of these functions that are optimized
for your target system. As with all embedded systems, these routines are used frequently
and take time and having a good memcpy routine can have a large impact on the overall
performance of your system.

The following has been defined in udefs.h and should be modified to call target
optimized versions of these functions:

#ifdef INTERNAL_MEMFN
#define _memcpy(d,s,l) _f_memcpy(d,s,l)
#define _memset(d,c,l) _f_memset(d,c,l)
#else
#include <string.h>
#define _memcpy(d,s,l) memcpy(d,s,l)
#define _memset(d,c,l) memset(d,c,l)
#endif

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 20 www.hcc-embedded.com

2.15. Malloc and Free

In udefs.h, _malloc and _free functions are predefined. They only exist when
USE_MALLOC is defined and in this case they are pointed to original library functions
malloc and free. If the application wants to use its separated memory management
routines then set _malloc and _free to point to them.

#define USE_MALLOC

#ifdef USE_MALLOC
#define _malloc(x) malloc(x) /* normally use malloc from
library */
#define _free(x) free(x) /* normally use free from
library */
#endif

2.16. Get Time

For the system to be compatible with other systems it is necessary to provide a real time
function so that files can be time-stamped.

An empty function (f_gettime) is provided in port.c which should be modified by the
developer to provide the time in standard format.

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit) such
that:

2-second increments (0-30 valid) (t & 0x001f)
minute (0-59 valid) ((t & 0x07e0) >> 5)
hour (0-23 valid) ((t & 0xf800) >> 11)

2.17. Get Date

For the system to be compatible with other systems it is necessary to provide a real time
function so that files can be date-stamped.

An empty function (f_getdate) is provided in port.c which should be modified by the
developer to provide the date in standard format.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit) such
that:

day (0-31) (d & 0x001f)
month (1-12 valid) ((d & 0x01e0) >> 5)
years since 1980 (0-119 valid) ((d & 0xfe00) >> 9)

2.18. Last accessed date

In udefs.h there is a #define for using auto update last accessed time field in directory
entry on read file. Set F_UPDATELASTACCESSDATE to 1 if you want to allow this

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 21 www.hcc-embedded.com

option, in this case whenever you open a file for read (“r”), then a sector write will
happen on directory entry which updates the last accessed date (date is checked before
updating to ensure it needs updating). To avoid this option (which saves unnecessary
sector writes) set F_UPDATELASTACCESSDATE to 0. In this case only other file
manipulations (“r+”,“w”,”w+”,”a”,”a+”) change this date entry.

2.19. Random Number

The port.c file contains a function (f_getrand) which the file system uses to get a
pseudo-random number to use as the volume serial number. This function is only
required if a hard-format of devices is required.

It is recommended that the developer replace this routine with a random function from
their base system or alternatively generate their own random number based on a
combination of the system time/date and a system constant such as a MAC address.

2.20. Separator Character

The udefs.h file contains a definition F_SEPARATORCHAR which allows the developer
to select whether the forward or back slash character is used as a separator in file paths.

2.21. Fast Seeking

The developer can define a number of points in a file to use as markers to allow fast
seeking in a file. The F_MAXSEEKPOS definition in udefs.h sets a number of points to
be stored with every file descriptor. Setting this to zero will mean that seeking will
always work from the current position or the beginning of the file only.
F_MAXSEEKPOS should only take power of 2 values or zero.

Note: The memory usage of the system is increased by:

F_MAXSEEKPOS*F_MAXFILES*sizeof(long)

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 22 www.hcc-embedded.com

3. Drive Format

This document does not describe a FAT file system in detail - there are many reference
works to choose from. This file system handles the majority of the features of a FAT file
system with no need for the developer to understand further. However, there are some
areas where an understanding may help - this section describes these features and
provides additional information about FAT formats.

There are three different forms in which your removable media maybe formatted with:

• Completely Unformatted Media
• Master Boot Record
• Boot sector Information only

The sections below describe how the system handles these three situations.

3.1. Completely unformatted

If a drive is completely unformatted then it is not useable until it has been formatted.
Most flash cards are pre-formatted whereas hard disk drives tend to be unformatted when
delivered.

The format of the card is determined by the number of sectors on it. Information about
the connected device is given to the system from the xxx_getphy call to the driver from
which the number of available clusters on the device is calculated.

When the f_format function is called the drive will be formatted with Boot Record
Information or xxx_getphy.

If more partition requested to be created then use f_createpartition, f_initvolumepartition
and f_format function for formatting.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 23 www.hcc-embedded.com

3.2. Master Boot Record

If a card contains a Master Boot Record it is formatted as in the tables below. Function
f_createpartition also can create MBR.

When a device is inserted with an MBR it will be treated as if it just has one partition (the
first in the partition table if f_initvolume is used. Multiple partitions can be initially by
f_initvolumepartition function.

Offset Bytes Entry Description Value/Range
0x0 446 Consistency check routine
0x1be 16 Partition table entry (table below)
0x1ce 16 Partition table entry (table below)
0x1de 16 Partition table entry (table below)
0x1ee 16 Partition table entry (table below)
0x1fe 1 Signature 0x55
0x1fe 1 Signature 0xaa

Table 1, Master Boot Record

Offset Bytes Entry Description Value/Range
0x0 1 Boot descriptor 0x00 (non-bootable device)

0x80 (bootable device)
0x1 3 First partition sector Address of first sector
0x4 1 File system descriptor 0 = empty

1 = FAT12
4 = FAT16 < 32MB
5 = Extended DOS
6 = FAT16 >= 32MB
0xB=FAT32
0x10-0xff free

0x5 3 Last partition sector Address of last sector
0x8 4 First sector position relative to

device start
First sector number

0xc 4 Number of sectors in partition Between 1 and max number
on device

Table 2, Partition Entry Description

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 24 www.hcc-embedded.com

3.3. Boot Sector information

This is the system used as standard by the file system. The first 36 bytes of the boot
sector are the same for FAT12/16/32 as in the first table. The second table shows the
format for the rest of the boot sector for FAT12/16. The third table shows the format of
the boot sector for FAT32.

Offset Bytes Entry Description Value/Range
0x0 3 Jump Command 0xeb 0xXX 0x90
0x3 8 OEM Name XXX: specify in udefs.h
0xb 2 Bytes/Sector 512
0xd 1 Sectors/Cluster XXX(1-64)
0xe 2 Reserved Sectors 1
0x10 1 Number of FATs 2
0x11 2 Number of root directory entries 512
0x13 2 Number of sectors on media XXX (dependent on card size, if

greater than 65535 then 0 and
number of total sectors is used)

0x15 1 Media Descriptor 0xf8 (hard disk)
0xf0 (removable media)

0x16 2 Sectors/FAT16 XXX (normally 2). This must be
zero for FAT32.

0x18 2 Sectors/Track 32 (not relevant)
0x1a 2 Number of heads 2 (not relevant)
0x1c 4 Number of hidden sectors 0 or if MBR present number relative

sector offset of this sector.
0x20 4 Number of total sectors XXX (depends on card size) or 0

Table 3, Boot Sector Information
Table First 36 bytes

Offset Bytes Entry Description Value/Range
0x24 1 Drive Number 0
0x25 1 Reserved 0
0x26 1 Extended boot signature 0x29
0x27 4 Volume ID or Serial Number Random number generated at format
0x2b 11 Volume Label "NO LABEL" is put here by a format
0x36 8 File System type “FAT16” or "FAT12"
0x3e 448 Load Program Code Filled with zeroes.
0x1fe 1 Signature 0x55
0x1ff 1 Signature 0xaa

Table 4, Boot Sector Information Table
FAT12/16 after byte 36

Note: The serial number field is generated by the random number function – see
porting section for information about its generation.

Offset Bytes Entry Description Value/Range

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 25 www.hcc-embedded.com

0x24 4 Sectors/FAT32 The number of sectors in one FAT
0x28 2 ExtFlags Always zero.
0x2a 2 File System Version 0 0
0x2c 4 Root Cluster Cluster number of the first cluster of the root

directory
0x30 2 File System Info Sector number of FSINFO structure in the

reserved area of the FAT32. Usually 1.
0x32 2 Backup Boot Sector If non-zero it indicates the sector number in the

reserved area of the volume of a copy of the
boot record. Usually 6.

0x34 12 Reserved All bytes always zero
0x40 1 Drive Number 0
0x41 1 Reserved 0
0x42 1 Boot Signature 0x29
0x43 4 Volume ID Random number generated at format.
0x47 11 Volume Label "NO LABEL" is put here by a format
0x52 8 File System Type Always set to string "FAT32 ".

Table 5, Boot Sector Information Table
FAT32 After byte 36

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 26 www.hcc-embedded.com

4. File API

4.1. File System Functions

General File System System functions

f_init f_getversion f_enterFS()
f_releaseFS()

 Volume functions

f_initvolume f_initvolumepartition f_delvolume
f_checkvolume f_get_volume_count f_get_volume_list
f_format f_createdriver f_releasedriver
f_getfreespace f_setlabel f_getlabel
f_get_oem f_createpartition f_getpartition

Drive\Directory handler functions

f_getdrive f_chdrive f_getcwd
f_getdcwd f_mkdir f_chdir
f_rmdir

File functions

f_rename f_move f_delete
f_filelength f_findfirst f_findnext
f_settimedate f_gettimedate f_getattr
f_setattr f_stat

Read/Write functions

f_open f_close f_write
f_read f_seek f_tell
f_eof f_seteof f_rewind
f_putc f_getc f_truncate
f_flush f_ftruncate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 27 www.hcc-embedded.com

4.2. Function Error Codes

Error Value Meaning
F_NO_ERROR 0 Success
F_ERR_INVALIDDRIVE 1 The specified drive does not exist
F_ERR_NOTFORMATTED 2 The specified volume has not been formatted
F_ERR_INVALIDDIR 3 The specified directory is invalid
F_ERR_INVALIDNAME 4 The specified file name is invalid
F_ERR_NOTFOUND 5 The file or directory could not be found
F_ERR_DUPLICATED 6 The file or directory already exists
F_ERR_NOMOREENTRY 7 The volume is full
F_ERR_NOTOPEN 8 The file access function requires the file to be open.
F_ERR_EOF 9 End of file
F_ERR_RESERVED 10 Not used
F_ERR_NOTUSEABLE 11 Invalid parameters for f_seek
F_ERR_LOCKED 12 The file has already been opened for writing/appending.
F_ERR_ACCESSDENIED 13 The necessary physical read and/or write functions are not

present for this volume
F_ERR_NOTEMPTY 14 The directory to be renamed or deleted is not empty.
F_ERR_INITFUNC 15 If no init function available for a driver or the function

generates an error.
F_ERR_CARDREMOVED 16 The card has been removed.
F_ERR_ONDRIVE 17 Non-recoverable error on drive
F_ERR_INVALIDSECTOR 18 A sector has developed an error.
F_ERR_READ 19 Error reading the volume
F_ERR_WRITE 20 Error writing file to volume
F_ERR_INVALIDMEDIA 21 The media is not recognized
F_ERR_BUSY 22 The caller could not obtain the semaphore within the

expiry time
F_ERR_WRITEPROTECT 23 The physical media is write protected
F_ERR_INVFATTYPE 24 The type of FAT is not recognized
F_ERR_MEDIATOOSMALL 25 Media is too small for the format type requested
F_ERR_MEDIATOOLARGE 26 Media is too large for the format type requested
F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only supported sector

size is 512 bytes.
F_ERR_UNKNOWN 28 Unspecified error has occurred
F_ERR_DRVALREADYMNT 29 The drive is already mounted
F_ERR_TOOLONGNAME 30 The name is too long
F_ERR_RESERVED_1 31 Reserved
F_ERR_DELFUNC 32 The delete drive driver function failed
F_ERR_ALLOCATION 33 Malloc failed to allocate required memory
F_ERR_INVALIDPOS 34 An invalid position is selected
F_ERR_NOMORETASK 35 All task entries are exhausted
F_ERR_NOTAVAILABLE 36 The called function is not supported by the target volume
F_ERR_TASKNOTFOUND 37 The callers task identifier was not registered – normally

because the f_enterfs() function has not been called.
F_ERR_UNUSABLE 38 The file system has become unusable – normally as a result

of excessive error rates on the underlying media,

Table 6, Error Codes

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 28 www.hcc-embedded.com

4.3. f_getversion

This function is used to retrieve file system version information.

Format
char * f_getversion(void)

Arguments

 None

Return values

 Return value Description
 Any pointer to null terminated ASCII string

Example
void display_fs_version(void)
{
 printf("File System Version: %s",f_getversion());
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 29 www.hcc-embedded.com

4.4. f_init

This function should be called once at startup to initialize the file system.

The developer can insert code into this function if there are any special requirements for a
particular target system. Function initiates internal variables.

Format
int f_init(void)

Arguments

 None

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

Example
void main()
{
 f_init(); /* initialize filesystem */
 .
 .
 .
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 30 www.hcc-embedded.com

4.5. f_enterFS

If the target system allows multiple tasks to use the file system then this function must be
called by a task before using any other file API functions. This function creates resource
for the calling task in the file system and allocates a current working directory for that
task.

The f_releaseFS() call must be made to release the task from the file system and free the
allocated resource..

The correct operation of this function also requires that the fn_gettaskID() in port_f.c has
been ported to give a unique identifier for each task.

Format
int f_enterFS(void)

Arguments

 Argument Description

Return values

 Return value Description
0 Success
Non-zero Error Code

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 31 www.hcc-embedded.com

4.6. f_releaseFS

This function is called by the user to release a previously assigned unique task ID used to
track the calling task’s current working directory.

The unique task identifier is that generated by fn_gettaskID() in port_f.c

Format
void f_releaseFS(long ID)

Arguments

 Argument Description
 ID unique identifier for calling task

Return values

 Return value Description
 none

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 32 www.hcc-embedded.com

4.7. f_initvolume

This function is used to initialize a volume. The function is called with a pointer to the
driver function that must be called to retrieve drive configuration information from the
relevant driver. This function works independently of the status of the hardware i.e. it
does not matter if a card is inserted or not.

Function f_initvolume always initiates the 1st partition on the media. To use multiple
partitions then use the f_initvolumepartition function.

Format
int f_initvolume(int drivenum, F_DRIVERINIT *driver_init, unsigned

long driver_param)

Arguments

 Argument Description
 drivenum drive to be initialized (0:A, 1:B...)
 driver_init pointer to initialization function for driver
 driver_param driver parameter (see below)

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

Note: The driver_param can be used to pass information to the low-level driver.
When the xxx_initfunc of the driver is called this parameter will be passed to the
driver. The usage of this parameter is optional and driver dependent. One use is to
specify which device associated with the specified driver will be initialized. For
convenience a definition F_AUTO_ASSIGN has been predefined to mean that the
driver should assign devices as it wishes – this convention is optional and has no
affect on the file system.

For more information about its usage please see Section Driver Interface.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 33 www.hcc-embedded.com

Example
void myinitfs(void)
{
 int ret;

 f_init();

 /* Make a RAM volume on Drive A */
 f_initvolume(0, f_ramdrvinit, F_AUTO_ASSIGN);

 /*Make a Compact Flash Volume on Drive B */
 f_initvolume(1, f_cfcinit, F_AUTO_ASSIGN);

 /*Make an MMC Volume on Drive C */
 f_initvolume(2, f_mmcinit, F_AUTO_ASSIGN);

 .
 .
 .
}

See also
f_format, f_initvolumepartition, f_checkvolume

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 34 www.hcc-embedded.com

4.8. f_initvolumepartition

This function is used to initialize a volume on an existing partition. The function is called
with a pointer to the function that must be called to retrieve drive configuration
information. This function requires the target drive to be connected.

If only the 1st partition is used on a media then f_initvolume() should be used.

Format
int f_initvolumepartition(int drvnumber, F_DRIVER *driver, int

partition)

Arguments

 Argument Description
 drivenum drive to be initialized (0:A, 1:B...)
 driver initialized driver (get from f_createdriver)
 partition which partition is requested to be built

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

Example
F_DRIVER *hdd;

int myinitfs(void)
{
 int ret;

 ret=f_createdriver(&hdd,f_hdddrvinit,0);
 if (ret) return ret;

 ret=f_initvolumepartition(0,hdd,0);
 if (ret) return ret;

 ret=f_initvolumepartition(1,hdd,1);

 return ret;
}

See also
f_format, f_initvolume, f_createdriver

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 35 www.hcc-embedded.com

4.9. f_createdriver

This function is used to initialize a driver. The function is called with a pointer to the
driver function that must be called to retrieve drive configuration information from the
relevant driver.

This function works independently of the status of the hardware i.e. it does not matter if a
card is inserted or not.

This function is only necessary if multiple partitions on a drive are used.

If f_initvolume() is used to initiate a volume, then f_createdriver() is not required as it is
called automatically.

On a drive which was created directly with the f_createdriver() function then
f_releasedriver() must be called to release the driver.

Format
int f_createdriver(F_DRIVER **driver, F_DRIVERINIT driver_init,

unsigned long driver_param)

Arguments

 Argument Description
 driver driver ptr, where to set up driver pointer
 driver_init pointer to initialization function for driver
 driver_param driver parameter (see below)

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

Note: The driver_param can be used to pass information to the low-level
driver. When the xxx_initfunc of the driver is called this parameter will be passed
to the driver. The usage of this parameter is optional and driver dependent. One
use is to specify which device associated with the specified driver will be
initialized. For convenience a definition F_AUTO_ASSIGN has been predefined
to mean that the driver should assign devices as it wishes – this convention is
optional and has no affect on the file system.

For more information about its usage please see Section Driver Interface.

Example

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 36 www.hcc-embedded.com

F_DRIVER *hdd;

int myinitfs(void)
{
 int ret;

 ret=f_createdriver(&hdd,f_hdddrvinit,0);
 if (ret) return ret;

 ret=f_initvolumepartition(0,hdd,0);
 if (ret) return ret;

 ret=f_initvolumepartition(1,hdd,1);

 return ret;
}

See also
f_format, f_initvolumepartition, f_createpartition,
f_releasedriver, f_delvolume

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 37 www.hcc-embedded.com

4.10. f_releasedriver

This function is used to release a driver when it is no longer required. f_initvolume() or
f_createdriver() can be called again after this.

If the driver was created by f_initvolume() then this function should not be called –
f_delvolume() will release the driver automatically.

If the driver was created by f_createdriver() then, after f_delvolume() has been called for
each volume on this drive, then f_releasedriver() should be called to release the driver.

If the driver was created by f_createdriver() and f_releasedriver() is called then
f_delvolume() will be called automatically for each volume on this drive.

Format
int f_releasedriver (F_DRIVER *driver, int partition)

Arguments

 Argument Description
 driver initialized driver (get from f_createdriver)

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 38 www.hcc-embedded.com

Example:
F_DRIVER *hdd;

int myinitfs(void)
{
 int ret;

 ret=f_createdriver(&hdd,f_hdddrvinit,0);
 if (ret) return ret;

 ret=f_initvolumepartition(0,hdd,0);
 if (ret) return ret;

 ret=f_initvolumepartition(1,hdd,1);

 return ret;
}

int myclose(void)
{
 return f_releasedriver(hdd);
}

See also
f_format, f_initvolumepartition, f_createdriver

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 39 www.hcc-embedded.com

4.11. f_createpartition

This function is used to create 1 or more partitions on a drive. This function is called with
a pointer to the function that must be called to retrieve drive configuration information.

This function may also be used to remove partitions by overwriting the current partition
table.

If only a single volume is required then it is simpler not to use a partition table and use
f_initvolume() to format.

 Calling this function will logically destroy all data on the drive.

The number of sectors on the target drive can be found by calling the
driver->getphy(driver,&phy). This information can be used to build the F_PARTITION
structure before f_createpartition() is called.

Format
int f_createpartition(F_DRIVER *driver, int parnum, F_PARTITION

*par)

Arguments

 Argument Description
 driver initialized driver (get from f_createdriver)
 parnum number of partition is in par ptr
 par partition pointer points to partition descriptor

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

Note: F_PARTITION structure is defined as

typedef struct
{
 unsigned long secnum; /* number of sectors in this partition */
 unsigned char system_indicator;/* use F_SYSIND_XX values*/
} F_PARTITION;

In this descriptor secnum is the number of sector in the partition, system_indicator
value is depending on the format it will be used on the partition. See
F_SYSIND_xx values in fat.h.

This function works similarly as the MS-DOS Fdisk function.

Example:

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 40 www.hcc-embedded.com

static F_PARTITION par2[2]=
{
 {1000, F_SYSIND_DOSFAT16UPTO32MB},
 {2000, F_SYSIND_DOSFAT16UPTO32MB}
};

F_DRIVER *hdd;

int mypartitiondrive()
{
 int ret;

 ret=f_createdriver(&hdd,f_hdddrvinit,0);
 if (ret) return ret;

 ret=f_createpartition(driver,2,par2);
 if (ret) return ret;

 return ret;
}

See also
f_format, f_initvolumepartition, f_createdriver, f_getpartition

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 41 www.hcc-embedded.com

4.12. f_getpartition

This function is used to get the used sectors and system indication byte from a portioned
media.

For drives which do not contain a partition table, then this function returns with the
number of sectors and 0 in the system indication byte.
If there is a partition table, then it collects information from the partition table entries. If
there is not enough space in the passed F_PARTITION table, then it signals
F_ERR_MEDIATOOLARGE error. In this case media has more partition table entries
than number of entries passed F_PARTITION table structure, so the caller should
increase the number of entries in this table.

Format
int f_getpartition(F_DRIVER *driver, int parnum, F_PARTITION *par)

Arguments

 Argument Description
 driver initialized driver (get from f_createdriver)
 parnum number of entry in the par parameter
 par partition pointer to retrieve information inside

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized
 else failed - see error codes

Note: F_PARTITION structure is defined as

typedef struct
{
 unsigned long secnum; /* number of sectors in this partition */
 unsigned char system_indicator;/* use F_SYSIND_XX values*/
} F_PARTITION;

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 42 www.hcc-embedded.com

Example:
static F_PARTITION par10[10];

int mypartitionlist(F_DRIVER *driver)
{
 int par;
 int ret=f_getpartition(driver,10 ,par10);
 if (ret) return ret; /* error */
 for (par=0; par<10; par++)
 {
 printf (“%d par - %d sys_ind %d sectors\n”,
 par, par[10].secnum, par10[par].system_indicator);
 }
 return 0;
}

See also
f_format, f_initvolumepartition, f_createdriver, f_createpartition

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 43 www.hcc-embedded.com

4.13. f_delvolume

This function is used to delete an existing volume. The link between the file system and
the driver will be broken i.e. an xxx_release call will be made to the driver. Any open
files on the media will be marked as closed so that subsequent API accesses to a
previously opened file handle will return with an error. If the volume’s driver was created
independently with f_createdriver, then this function deletes only the volume and
f_release function is needed to be called for calling xxx_release driver functions.

This function works independently of the status of the hardware i.e. it does not matter if a
card is inserted or not.

Format
int f_delvolume(int drivenum)

Arguments

 Argument Description
 drivenum drive to be deleted (0:A, 1:B...)

Return values

 Return value Description
 F_NO_ERROR drive successfully deleted
 else failed - see error codes

Example:
void mydelfs(int num)
{
 int ret;

 /*Delete volume 1 */
 if(f_delvolume(num))
 printf(“Unable to delete volume %d”, num);
 .
 .
 .
}

See also
f_initvolume

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 44 www.hcc-embedded.com

4.14. f_checkvolume

This function is used to check the status of a drive which has been initialized.

Format
int f_checkvolume(int drivenum)

Arguments

 Argument Description
 drivenum drive to be checked (0:A, 1:B...)

Return values

 Return value Description
 F_NO_ERROR drive is working
 else there is an error on the drive e.g. card missing

Example
void mychkfs(int num)
{
 int ret;

 /*Delete volume 1 */
 if(f_checkvolume(num))
 {
 printf(“Volume %d is not usable, Error %d”, num, ret);
 }
 else
 {
 printf((“Volume %d is working”, num);
 }
 .
 .
}

See also
f_initvolume, f_delvolume

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 45 www.hcc-embedded.com

4.15. f_get_volume_count

This function returns the number of volumes currently available to the user.

Format
int f_get_volume_count(void)

Arguments

 Argument Description
 none

Return values

 Return value Description
 num number of active volumes

Example
void mygetvols(void)
{
 printf(“there are %d active volumes\n”,
 f_get_volume_count());
 .
 .
}

See also
f_get_volune_list

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 46 www.hcc-embedded.com

4.16. f_get_volume_list

This function returns a list of volumes currently available to the user.

Format
int f_get_volume_list(int *buffer)

Arguments

 Argument Description
 none

Return values

 Return value Description
 number number of active volumes

Example:
void mygetvols(void)
{
 int i,j;
 int buffer[F_MAXVOLUME];

 if (i=f_get_volume_list(buffer))
 {
 for (j=0;j<i;j++)
 {
 printf(“Volume %d is active\n”, buffer[j]);
 }
 }
}

See also

 f_get_volume_count

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 47 www.hcc-embedded.com

4.17. f_format

It formats the specified drive. If the media is not present this routine will fail. If
successful all data on the specified volume will be destroyed. Any open files will be
closed.

Any existing Master Boot Record will be unaffected by this command. The boot sector
information will be re-created from the information provided by f_getphy() (see Section 3
Drive Format).

The caller must specify the required format:

F_FAT12_MEDIA for FAT12
F_FAT16_MEDIA for FAT16
F_FAT32_MEDIA for FAT32

The format will fail if the specified format type is incompatible with the size of the
physical media.

Format
int f_format(int drivenum, long fattype)

Arguments

 Argument Description
 drivenum drive to be formatted (0=”A”…)
 fattype type of format: FAT12, FAT16 or FAT32

Return values

 Return value Description
 F_NO_ERROR drive successfully formatted
 else format failed - see error codes

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 48 www.hcc-embedded.com

Note: The number of sectors per cluster on a FAT32 drive is determined by the
table below which is included in the fat.c and fat_lfn.c files. The table specifies
the number of sectors on the target device below which the second number gives
the number of sectors per cluster. This table may be modified if required.

static const t_FAT32_CS FAT32_CS[]=
{
 { 0x00020000, 1 }, /* ->64MB */
 { 0x00040000, 2 }, /* ->128MB */
 { 0x00080000, 4 }, /* ->256MB */
 { 0x01000000, 8 }, /* ->8GB */
 { 0x02000000, 16 }, /* ->16GB */
 { 0x0ffffff0, 32 } /* -> ... */
};

Example:
void myinitfs(void)
{
 int ret;

 f_initvolume(0,f_cfcinit, F_AUTO_ASSIGN);

 ret=f_format(0, F_FAT16_MEDIA);

 if(ret)
 printf(“Unable to format CFC: Error %d”,ret);
 else
 printf(“CFC formatted”);

 .
 .
}

See also
 f_initvolume, f_format

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 49 www.hcc-embedded.com

4.18. f_getfreespace

This function fills a structure with information about the drive space usage - total space,
free space, used space and bad (damaged) size.

Note: If a drive size of greater than 4GB is being used then the high elements of
the returned structure should also be read to get the upper 32 bits of each of the
numbers i.e pspace.total_high etc.

Note: The first call to this function after a drive is mounted may take some time
depending on the size and format of the disk being used. After the initial call
changes to the volume are counted – the function then returns immediately with
this data.

Format
int f_getfreespace(int drivenum, F_SPACE *pspace)

Arguments

 Argument Description
 drivenum drive number
 pspace pointer to F_SPACE structure

Return values

 Return value Description
 F_NO_ERROR no error
 else error code

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 50 www.hcc-embedded.com

Example
void info(void)
{
 F_SPACE space;
 int ret;

 /* get free space on current drive */
 int ret = f_getfreespace(f_getcurrdrive(),&space);

 if(!ret)
 {
 printf("There are %d bytes total, %d bytes free, \
 %d bytes used, %d bytes bad.",
 space.total, space.free, space.used, space.bad);
 }
 else
 {
 printf("\nError %d reading drive\n", ret);
 }
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 51 www.hcc-embedded.com

4.19. f_setlabel

This function sets a volume label. The volume label should be an ASCII string with a
maximum length of 11 characters. Non-printable characters will be padded out as space
characters.

Format
int f_setlabel(int drivenum, const char *pLabel)

Arguments

 Argument Description
 drivenum drive number
 pLabel pointer to null terminated string to use

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void setlabel(void)
{
 int result = f_setlabel(f_getcurrdrive(),"DRIVE 1");

 if (result)
 printf("Error on Drive");
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 52 www.hcc-embedded.com

4.20. f_getlabel

This returns the label to a function. The pointer passed for storage should be capable of
holding an 11 character string.

Format
int f_getlabel(int drivenum, char *pLabel, long len)

Arguments

 Argument Description
 drivenum drive number
 pLabel pointer to copy label to
 len length of storage area

Return values

 Return value Description
 F_NOERROR success
 else (see error codes table)

Example
void getlabel(void)
{
 char label[12];
 int result;

 result = f_getlabel(f_getcurrdrive(),label,12);

 if (result)
 printf("Error on Drive");
 else
 printf("Drive is %s",label);
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 53 www.hcc-embedded.com

4.21. f_get_oem

This returns the OEM name in the disk bootrecord. The pointer passed for storage should
be capable of holding an 8 character long string.

Format
int f_get_oem(int drivenum, char *str, long len)

Arguments

 Argument Description
 drivenum drive number
 str pointer to copy label to
 len length of storage area

Return values

 Return value Description
 F_NOERROR success
 else (see error codes table)

Example
void get_disk_oem(void)
{
 char oem_name[9];
 int result;

 oem_name[8]=0; /* zero terminate string */
 result = f_get_oem(f_getcurrdrive(),oem_name,8);

 if (result)
 printf("Error on Drive");
 else
 printf("Drive OEM is %s",oem_name);
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 54 www.hcc-embedded.com

4.22. f_mkdir

Makes a new directory.

Format
int f_mkdir(const char *dirname)

Arguments

 Argument Description
 dirname new directory name to create

Return values

 Return value Description
 F_NO_ERROR new directory name created successfully
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_mkdir(“subfolder”); /*creating directory */
 f_mkdir(“subfolder/sub1”);
 f_mkdir(“subfolder/sub2”);
 f_mkdir(“a:/subfolder/sub3”
 .
 .
}

See also
f_chdir, f_rmdir

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 55 www.hcc-embedded.com

4.23. f_chdir

Change directory

Format
int f_chdir(const char *dirname)

Arguments

 Argument Description
 dirname directory to change to

Return values

 Return value Description
 F_NO_ERROR directory has been change successfully
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_mkdir(“subfolder”);
 f_chdir(“subfolder”); /*change directory */ f_mkdir(“sub2”);
 f_chdir(“..”); /*go to upward */
 f_chdir(“subfolder/sub2”); /*goto into sub2 dir */
 .
 .
}

See also
f_mkdir, f_rmdir, f_getcwd, f_getdcwd

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 56 www.hcc-embedded.com

4.24. f_rmdir

Remove a directory. The target directory must be empty when this is called; otherwise it
returns an error code.

If a directory is read-only then this function returns an error code.

Format
int f_rmdir(const char *dirname)

Arguments

 Argument Description
 dirname name of directory to remove

Return values

 Return value Description
 F_NO_ERROR directory name is removed successfully
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_mkdir(“subfolder”); /*creating directories */
 f_mkdir(“subfolder/sub1”);
 .
 . /* doing some work */
 .
 f_rmdir(“subfolder/sub1”);
 f_rmdir(“subfolder”); /*removes directory */
 .
 .
}

See also
f_mkdir, f_chdir

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 57 www.hcc-embedded.com

4.25. f_getdrive

Get current drive number

Format
int f_getdrive(void)

Arguments

none

Return values

 Return value Description
 Current Drive 0-A, 1-B, 2-C etc

Example
void myfunc(void)
{
 int currentdrive;
 .
 currentdrive=f_getdrive();
 .
 .
}

See also
f_chdrive

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 58 www.hcc-embedded.com

4.26. f_chdrive

Change to a new current drive.

Format
int f_chdrive(int drivenum)

Arguments

 Argument Description
 drivenum drive number to change to (0-A,1-B,2-C,…)

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_chdrive(0);/*select drive A */
 .
 .
}

See also
f_getdrive

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 59 www.hcc-embedded.com

4.27. f_getcwd

Get current working directory on current drive.

Format
int f_getcwd(char *buffer, int maxlen)

Arguments

 Argument Description
 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
#define BUFFLEN F_MAXPATH+F_MAXNAME

void myfunc(void)
{
 char buffer[BUFFLEN];

 if (!f_getcwd(buffer, BUFFLEN))
 {
 printf (“current directory is %s”,buffer);
 }
 else
 {
 printf (“Drive Error”)
 }
}

See also
f_chdir, f_getdcwd

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 60 www.hcc-embedded.com

4.28. f_getdcwd

Get current working folder on selected drive.

Format
int f_getdcwd(int drivenum, char *buffer, int maxlen)

Arguments

 Argument Description
 drivenum specify drive (0-A, 1-B, 2-C)
 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
#define BUFFLEN F_MAXPATH+F_MAXNAME

void myfunc(long drivenum)
{
 char buffer[BUFFLEN];

 if (!f_getcwd(drivenum,buffer, BUFFLEN))
 {
 printf (“current directory is %s”,buffer);
 printf (“on drive %c”,drivenum+’A’);
 }
 else
 {
 printf (“Drive Error”)
 }
}

See also
f_chdir, f_getcwd

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 61 www.hcc-embedded.com

4.29. f_rename

Renames a file or directory. This function has been obsoleted by f_move.

If a file or directory is read-only it cannot be renamed. If a file is already open it cannot
be renamed.

Format
int f_rename(const char *filename, const char *newname)

Arguments

 Argument Description
 filename file or directory name with/without path
 newname new name of target file or directory (without path)

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_rename (“oldfile.txt”,”newfile.txt”);
 f_rename (“A:/subdir/oldfile.txt”,”newfile.txt”);
 .
 .
}

See also
f_mkdir, f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 62 www.hcc-embedded.com

4.30. f_move

Moves a file or directory – the original is lost. This function obsoletes f_rename(). The
source and target must be in the same volume.

Format
int f_move(const char *filename, const char *newname)

Arguments

 Argument Description
 filename file or directory name with/without path
 newname new name of file or directory with/without path

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_move (“oldfile.txt”,”newfile.txt”);
 f_move (“A:/subdir/oldfile.txt”,“A:/newdir/oldfile.txt”);
 .
 .
}

See also
f_mkdir, f_open, f_rename

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 63 www.hcc-embedded.com

4.31. f_delete

Deletes a file.

A read-only or open file cannot be deleted.

Format
int f_delete(const char *filename)

Arguments

 Argument Description
 filename file name with or without path to be deleted

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_delete (“oldfile.txt”);
 f_delete (“A:/subdir/oldfile.txt”);
 .
 .
}

See also
f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 64 www.hcc-embedded.com

4.32. f_filelength

Get the length of a file. If the requested file does not exist or has any error then this
function returns with -1.

Note: This function can also return with the opened file’s size when
_f_findopensize function is allowed to search for it. If _f_findopensize function
returns always with zero, then this feature is disabled.

Format
long f_filelength (const char *filename)

Arguments

 Argument Description
 filename file name with or without path

Return values

 Return value Description
 filelength length of file
 -1 if any error

Example
int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file=f_open(filename,”r”);
 long size=f_filelength(filename);

 if (!file)
 {
 printf (“%s Cannot be opened!”,filename);
 return 1;
 }

 if (size>buffsize)
 {
 printf (“Not enough memory!”);
 return 2;
 }

 f_read(buffer,size,1,file);
 f_close(file);

 return 0;
}

See also
f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 65 www.hcc-embedded.com

4.33. f_findfirst

Find first file or subdirectory in specified directory. First call f_findfirst function and if
file was found get the next file with f_findnext function.
Files with the system attribute set will be ignored.

Note: If this is called with "*.*" and this is not the root directory the first entry
found will be "." - the current directory.

Format
int f_findfirst(const char *filename, F_FIND *find)

Arguments

 Argument Description
 filename name of file to find
 find where to store find information

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void mydir(void)
{
 F_FIND find;
 if (!f_findfirst("A:/subdir.*",&find))
 {
 do
 {
 printf (“filename:%s”,find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 printf (“ directory\n”);
 }
 else
 {
 printf (“ size %d\n”,find.len);
 }
 } while (!f_findnext(&find));
 }
}

See also
f_findnext

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 66 www.hcc-embedded.com

4.34. f_findnext

Finds the next file or subdirectory in a specified directory after a previous call to
f_findfirst or f_findnext. First call f_findfirst function and if file was found get the rest
of the matching files by repeated calls to the f_findnext function.
Files with the system attribute set will be ignored.

Note: If this is called with "*.*" and it is not the root directory the first file found
will be ".." - the parent directory.

Format
int f_findnext(F_FIND *find)

Arguments

 Argument Description
 find find information (created by f_findfirst call)

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void mydir(void)
{
 F_FIND find;
 if (!f_findfirst("A:/subdir.*",&find))
 {
 do
 {
 printf (“filename:%s”,find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 printf (“ directory\n”);
 }
 else
 {
 printf (“ size %d\n”,find.len);
 }
 } while (!f_findnext(&find));
 }
}

See also
f_findfirst

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 67 www.hcc-embedded.com

4.35. f_stat

Get information about a file. This function retrieves information by filling the F_STAT
structure passed to it. It sets filesize, creation time/date, last access date, modified
time/date, and the drive number where the file is located.

Note: This function can also return with the opened file’s current size when
_f_findopensize function is allowed to search through all open file descriptors for
its modified size. If this feature is disabled then the _f_findopensize function
returns always zero.

Format
int f_stat (const char *filename, F_STAT *stat);

Arguments

 Argument Description
 filename file
 stat pointer to F_STAT structure to be filled

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 F_STAT stat;
 if (f_stat(“myfile.txt”,&stat))
 {
 printf (“error”);
 return;
 }
 printf (“filesize:%d”,stat.filesize);
}

See also
f_gettimedate, f_settimedate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 68 www.hcc-embedded.com

4.36. f_settimedate

Set the time and date of a file or directory. (See Section 2 Porting – Step by Step Guide
for further information about porting).

Format
int f_settimedate(const char *filename, unsigned short ctime,

unsigned short cdate)

Arguments

 Argument Description
 filename file
 ctime creation time of file or directory
 cdate creation date of file or directory

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 f_mkdir(“subfolder”); /*creating directory */

 f_settimedate(“subfolder”,f_gettime(),f_getdate());
}

See also
f_gettimedate, f_stat

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 69 www.hcc-embedded.com

4.37. f_gettimedate

Get time and date information from a file or directory. (See Section 2 Porting – Step by
Step Guide for more information about porting).

Format
int f_gettimedate(const char *filename, unsigned short *pctime,

unsigned short *pcdate)

Arguments

 Argument Description
 filename target file
 pctime pointer to where to store creation time
 pcdate pointer to where to store creation date

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 unsigned short t,d;
 if (!f_gettimedate(“subfolder”,&t,&d))
 {
 unsigned short sec=(t & 0x001f) << 1;
 unsigned short minute=((t & 0x07e0) >> 5);
 unsigned short hour=((t & 0x0f800) >> 11);
 unsigned short day= (d & 0x001f);
 unsigned short month= ((d & ox01e0) >> 5);
 unsigned short year=1980+((d & 0xf800) >> 9);

 printf (“Time: %d:%d:%d”,hour,minute,sec);
 printf (“Date: %d.%d.%d”,year,month,day);
 }
 else
 {
 printf (“File time cannot retrieved!”
 }
}

See also
f_settimedate, f_stat

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 70 www.hcc-embedded.com

4.38. f_setattr

This routine is used to set the attributes of a file. Possible file attribute settings are
defined by the FAT file system:

F_ATTR_ARC Archive
F_ATTR_DIR Directory
F_ATTR_VOLUME Volume
F_ATTR_SYSTEM System
F_ATTR_HIDDEN Hidden
F_ATTR_READONLY Read Only

Note: The directory and volume attributes cannot be set by this function.

Format
int f_setattr(const char *filename, unsigned char attr)

Arguments

 Argument Description
 filename target file
 attr new attribute setting

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{

 /* make myfile read only and hidden */

 f_setattr("myfile.txt", F_ATTR_READONLY | F_ATTR_HIDDEN);
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 71 www.hcc-embedded.com

4.39. f_getattr

This routine is used to get the attributes of a specified file. Possible file attribute settings
are defined by the FAT file system:

F_ATTR_ARC Archive
F_ATTR_DIR Directory
F_ATTR_VOLUME Volume
F_ATTR_SYSTEM System
F_ATTR_HIDDEN Hidden
F_ATTR_READONLY Read Only

Format
int f_getattr(const char *filename, unsigned char *attr)

Arguments

 Argument Description
 filename target file
 attr pointer to place attribute setting

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 unsigned char attr;

 /* find if myfile is read only */

 if(!f_getattr("myfile.txt",&attr)
 {
 if(attr & F_ATTR_READONLY)
 printf("myfile.txt is read only");
 else
 printf("myfile.txt is writable");
 }
 else
 {
 printf("file not found");
 }
}

4.40. f_open

Opens a file. The following modes are allowed to open:

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 72 www.hcc-embedded.com

mode description
"r" Open existing file for reading. The stream is positioned at the beginning of

the file.
"r+" Open existing file for reading and writing. The stream is positioned at the

beginning of the file.
"w" Truncate file to zero length or create file for writing. The stream is

positioned at the beginning of the file.
"w+" Open a file for reading and writing. The file is created if it does not exist,

otherwise it is truncated. The stream is positioned at the beginning of the
file.

"a" Open for appending (writing to end of file). The file is created if it does
not exist. The stream is positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is created
if it does not exist. The stream is positioned at the end of the file.

Table 7, f_open modes

The same file can be opened multiple times in “r” mode.

If a file is opened in “w” or “w+” mode then there is a lock mechanism which denies
opening file for in any other mode. This prevents the file to be opened for reading and
writing at the same time.

If a file is open in “a” or “a+” mode, then any number of “r” mode opens are allowed at
the same time.

Note: There is no text mode. The system assumes all files to be accessed in binary
mode only.

Format
F_FILE *f_open(const char *filename, const char *mode);

Arguments

 Argument Description
 filename file to be opened
 mode mode to open file with

Return values

 Return value Description
 F_FILE * pointer to the associated opened file handle or zero if it

could not be opened

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 73 www.hcc-embedded.com

Example
void myfunc(void)
{
 F_FILE *file;
 char c;

 file=f_open(“myfile.bin”,”r”);
 if (!file)
 {
 printf (“File cannot be opened!”);
 return;
 }
 f_read(&c,1,1,file); /*read 1 byte */
 printf (“’%c’ is read from file”,c);
 f_close(file);
}

See also
f_read, f_write, f_close,

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 74 www.hcc-embedded.com

4.41. f_close

Close a previously opened file.

Format
int f_close(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of target file

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 F_FILE *file;
 char *string=”ABC”;

 file=f_open(“myfile.bin”,”w”);
 if (!file)
 {
 printf (“File cannot be opened!”);
 return;
 }

 f_write(string,3,1,file); /*write 3 bytes */

 if (!f_close(file))
 {
 printf (“file stored”);
 }
 else printf (“file close error”);
}

See also
f_open, f_read, f_write

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 75 www.hcc-embedded.com

4.42. f_flush

Flushes an open file to disk. This is logically equivalent to doing a close and open on a
file to ensure the data changed before the flush is committed to the disk.

Format
int f_flush(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of target file

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 F_FILE *file;
 char *string=”ABC”;

 file=f_open(“myfile.bin”,”w”);
 if (!file)
 {
 printf (“File cannot be opened!”);
 return;
 }
 f_write(string,3,1,file); /*write 3 bytes */

 f_flush(file); /* commit data written */
 .
 .
 .
}

See also
f_open, f_close

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 76 www.hcc-embedded.com

4.43. f_write

Write data to file at current stream position. File has to be opened with “w”, “w+”, "a+",
"r+" or “a”.

Format
long f_write(const void *buf, long size,long size_st, F_FILE

*filehandle)

Arguments

 Argument Description
 buf pointer to data to be written
 size size of items to be written
 size_st number of items to be written
 filehandle handle of target file

Return values

 Return value Description
 number number of items written

Example
void myfunc(void) {
F_FILE *file;
char *string=”ABC”;
file=f_open(“myfile.bin”,”w”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}

/* write 3 bytes */

if(f_write(string,1,3,file)!=3)
{
printf (“Error: not all items written”);
}

f_close(file);
}

See also
f_read, f_open, f_close

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 77 www.hcc-embedded.com

4.44. f_read

Read bytes from the current position in the target file. File has to be opened with “r”,
"r+", "w+" or "a+".

Format
long f_read(void *buf, long size,long size_st, F_FILE

*filehandle)

Arguments

 Argument Description
 buf buffer where to store data
 size size of items to be read
 size_st number of items to be read
 filehandle handle of target file

Return values

 Return value Description
 number number of items read

Example
int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file=f_open(filename,”r”);
 long size=f_filelength(filename);

 if (!file)
 {
 printf (“%s Cannot be opened!”,filename);
 return 1;
 }

 if (f_read(buffer,1,size,file)!=size)
 {
 printf (“not all items read!!”);
 }
 f_close(file);
 return 0;
}

See also
f_seek, f_tell, f_open, f_close, f_write

4.45. f_seek

Move stream position in the target file. The file must be open.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 78 www.hcc-embedded.com

The Whence parameter could be one of:

F_SEEK_CUR - Current position of file pointer
F_SEEK_END - End of file
F_SEEK_SET - Beginning of file

offset position is relative to whence.

Format
long f_seek(F_FILE *filehandle,long offset, long whence)

Arguments

 Argument Description
 filehandle handle of open target file
 offset relative byte position according to whence
 whence where to calculate offset from

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file=f_open(filename,”r”);

 f_read(buffer,1,1,file); /* read 1st byte */
 f_seek(file,0,SEEK_SET);
 f_read(buffer,1,1,file); /* read the same byte */
 f_seek(file,-1,SEEK_END);
 f_read(buffer,1,1,file); /* read last byte */
 f_close(file);

 return 0;
}

See also
f_read, f_tell

4.46. f_tell

Tells the current read-write position in the open target file.

Format
long f_tell(F_FILE *filehandle)

Arguments

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 79 www.hcc-embedded.com

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 filepos current read or write file position

Example
int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file=f_open(filename,”r”);
 printf (“Current position %d”,f_tell(file));
 /* position 0 */

 f_read(buffer,1,1,file); /* read 1 byte
 printf (“Current position %d”,f_tell(file));
 /* positin 1 */

 f_read(buffer,1,1,file); /* read 1 byte
 printf (“Current position %d”,f_tell(file));
 /* position 2 */

 f_close(file);
 return 0;
}

See also
f_seek, f_read, f_write, f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 80 www.hcc-embedded.com

4.47. f_eof

Check whether the current position in the open target file is the end of the file.

Format
int f_eof(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 0 not at end of file
 else end of file or any error

Example
int myreadfunc(char *filename, char *buffer, long buffsize) {
F_FILE *file=f_open(filename,”r”);
while (!f_eof()) {
 if (!buffsize) break;
 buffsize--;
 f_read(buffer++,1,1,file);
}
f_close(file);
return 0;
}

See also
f_seek, f_read, f_write, f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 81 www.hcc-embedded.com

4.48. f_seteof

Move the end of file to the current file pointer. All data after the new EOF position is
lost.

Format
int f_seteof(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 0 Success
 else Failed – see error codes

Example
int mytruncatefunc(char *filename, int position)
{
 F_FILE *file=f_open(filename,”r”);

 f_seek(file,position,SEEK_SET);

 if(f_seteof(file))
 printf(“Truncate Failed\n”);

 f_close(file);
 return 0;
}

See also
f_truncate, f_write, f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 82 www.hcc-embedded.com

4.49. f_rewind

Sets the file position in the open target file to the start of the file.

Format
int f_rewind(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 char buffer[4];
 char buffer2[4];

 F_FILE *file=f_open("myfile.bin",”r”);
 if (file)
 {
 f_read(buffer,4,1,file);

 /*rewind file pointer */
 f_rewind(file);

 /*read from beginning */
 f_read(buffer2,4,1,file);

 f_close(file);
 }
 return 0;
}

See also
f_seek, f_read, f_write, f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 83 www.hcc-embedded.com

4.50. f_putc

Writes a character to the specified open file at the current file position. The current file
position is incremented.

Format
int f_putc(char ch,F_FILE *filehandle)

Arguments

 Argument Description
 ch character to be written
 filehandle handle of open target file

Return values

 Return value Description
 -1 Write failed
 value Successfully written character

Example
void myfunc (char *filename, long num)
{
 F_FILE *file=f_open(filename,”w”);
 while (num--)
 {
 int ch='A';
 if(ch!=(f_putc(ch))
 {
 printf("f_putc error!");
 break;
 }
 }
 f_close(file);
 return 0;
}

See also
f_seek, f_read, f_write, f_open

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 84 www.hcc-embedded.com

4.51. f_getc

Reads a character from the current position in the target open file.

Format
int f_getc(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
-1 Read failed
value character read from the file

Example
int myreadfunc(char *filename, char *buffer, long buffsize)
{
 F_FILE *file=f_open(filename,”r”);
 while (buffsize--)
 {
 int ch;
 if((ch=f_getc(file))== -1)
 break;
 *buffer++=ch;
 buffsize--;
 }

 f_close(file);
 return 0;
}

See also
f_seek, f_read, f_write, f_open, f_eof

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 85 www.hcc-embedded.com

4.52. f_truncate

Opens a file for writing and truncates it to the specified length. If the length is greater
than the length of the existing file then the file is padded with zeroes to the truncated
length.

Format
F_FILE *f_truncate(const char *filename, unsigned long length)

Arguments

 Argument Description
 filename file to be opened
 length new length of file

Return values

 Return value Description
 F_FILE * pointer to the associated opened file handle or zero if it

could not be opened

Example
int mytruncatefunc(char *filename, unsigned long length)
{
 F_FILE *file=f_truncate(filename,length);

 if(!file)
 printf(“File not found”);
 else
 {
 printf(“File %s truncated to %d bytes, filename, length);
 f_close(file);
 }
 return 0;
}

See also
f_open, f_ftruncate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 86 www.hcc-embedded.com

4.53. f_ftruncate

If a file is opened for writing, then this function truncates it to the specified length. If the
length is greater than the length of the existing file then the file is padded with zeroes to
the truncated length.

Format
int f_ftruncate(F_FILE *filehandle, unsigned long length)

Arguments

 Argument Description
 filehandle open file handle
 length new length of file

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
int mytruncatefunc(F_FILE *file, unsigned long length)
{
 int ret=f_ftruncate(filename,length);

 if (ret)
 {
 printf(“error:%d\n”,ret);
 }
 else
 {
 printf(“File is truncated to %d bytes”, length);
 }

 return ret;
}

See also
f_open, f_truncate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 87 www.hcc-embedded.com

4.54. f_getlasterror

It returns with the last error code. Last error code is cleared/changed when any API
function is called.

Format
int f_getlasterror()

Arguments

none

Return values

 Return value Description
 Error code last error code

Example
int myopen()
{
 F_FILE *file;
 file=f_open(“nofile.tst”,”rb”);
 if (!file)
 {
 int rc=f_getlasterror();
 printf (“f_open failed, errorcode:%d\n”,rc);
 return rc;
 }

 return F_NO_ERROR;
}

See also
f_open, f_filelength, f_read, f_write

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 88 www.hcc-embedded.com

5. Unicode API

5.1. Unicode Specific File System Functions

When Unicode is enabled the following functions are available as well as their standard
API equivalents. All functions are exactly as their standard API counterparts except that
all character string parameters are changed to “wide character” (wchar) strings.

Drive\Directory handler functions

f_wgetcwd
f_wgetdcwd
f_wmkdir
f_wchdir
f_wrmdir

File functions

f_wrename
f_wmove
f_wdelete
f_wfilelength
f_wfindfirst
f_wfindnext
f_wsettimedate
f_wgettimedate
f_wgetattr
f_wsetattr
f_wstat

Read/Write functions
f_wopen
f_wtruncate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 89 www.hcc-embedded.com

5.2. f_wmkdir

Makes a new directory.

Format
int f_wmkdir(const wchar *dirname)

Arguments

 Argument Description
 dirname new directory name to create

Return values

 Return value Description
 F_NO_ERROR new directory name created successfully
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_wmkdir(“subfolder”); /*creating directory */
 f_wmkdir(“subfolder/sub1”);
 f_wmkdir(“subfolder/sub2”);
 f_wmkdir(“a:/subfolder/sub3”
 .
 .
}

See also
f_wchdir, f_wrmdir

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 90 www.hcc-embedded.com

5.3. f_wchdir

Change directory

Format
int f_wchdir(const wchar *dirname)

Arguments

 Argument Description
 dirname directory to change to

Return values

 Return value Description
 F_NO_ERROR directory has been change successfully
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_wmkdir(“subfolder”);

f_wchdir(“subfolder”); /* change directory */
f_wmkdir(“sub2”);

 f_wchdir(“..”); /* go to upward */
 f_wchdir(“subfolder/sub2”); /* goto into sub2 dir */
 .
 .
}

See also
f_wmkdir, f_wrmdir, f_wgetcwd, f_wgetdcwd

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 91 www.hcc-embedded.com

5.4. f_wrmdir

Remove a directory. The target directory must be empty when this is called; otherwise it
returns an error code.

If a directory is read-only then this function returns an error code.

Format
int f_wrmdir(const wchar *dirname)

Arguments

 Argument Description
 dirname name of directory to remove

Return values

 Return value Description
 F_NO_ERROR directory name is removed successfully
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_wmkdir(“subfolder”); /*creating directories */
 f_wmkdir(“subfolder/sub1”);
 .
 . /* doing some work */
 .
 f_wrmdir(“subfolder/sub1”);
 f_wrmdir(“subfolder”); /*removes directory */
 .
 .
}

See also
f_wmkdir, f_wchdir

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 92 www.hcc-embedded.com

5.5. f_wgetcwd

Get current working directory on current drive.

Format
int f_wgetcwd(wchar *buffer, int maxlen)

Arguments

 Argument Description
 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
#define BUFFLEN F_MAXPATH+F_MAXNAME

void myfunc(void)
{
 wchar buffer[BUFFLEN];

 if (!f_wgetcwd(buffer, BUFFLEN))
 {
 printf (“current directory is %s”,buffer);
 }
 else
 {
 printf (“Drive Error”)
 }
}

See also
f_wchdir, f_wgetdcwd

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 93 www.hcc-embedded.com

5.6. f_wgetdcwd

Get current working folder on selected drive.

Format
int f_wgetdcwd(int drivenum, wchar *buffer, int maxlen)

Arguments

 Argument Description
 drivenum specify drive (0-A, 1-B, 2-C)
 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
#define BUFFLEN F_MAXPATH+F_MAXNAME

void myfunc(long drivenum)
{
 wchar buffer[BUFFLEN];

 if (!f_wgetcwd(drivenum, buffer, BUFFLEN))
 {
 printf (“current directory is %s”,buffer);
 printf (“on drive %c”,drivenum+’A’);
 }
 else
 {
 printf (“Drive Error”)
 }
}

See also
f_wchdir, f_wgetcwd

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 94 www.hcc-embedded.com

5.7. f_wrename

Renames a file or directory. This function is obsoleted by f_wmove.

If a file or directory is read-only it cannot be renamed. If a file is already open it cannot
be renamed.

Format
int f_wrename(const wchar *filename, const wchar *newname)

Arguments

 Argument Description
 filename file or directory name with/without path
 newname new name of target file or directory (without path)

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_wrename (“oldfile.txt”,”newfile.txt”);
 f_wrename (“A:/subdir/oldfile.txt”,”newfile.txt”);
 .
 .
}

See also
f_wmkdir, f_wopen, f_wmove

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 95 www.hcc-embedded.com

5.8. f_wmove

Moves a file or directory with unicode16 name. The original is lost. This function
obsoletes f_wrename. The source and target must be in the same volume.

Format
int f_wmove(const W_CHAR *filename, const W_CHAR *newname)

Arguments

 Argument Description
 filename file or directory name with/without path
 newname new name of file or directory with/without path

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_wmove (“oldfile.txt”,”newfile.txt”);
 f_wmove (“A:/subdir/oldfile.txt”,“A:/newdir/oldfile.txt”);
 .
 .
}

See also
f_wmkdir, f_wopen, f_wrename

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 96 www.hcc-embedded.com

5.9. f_wdelete

Deletes a file.

A read-only or open file cannot be deleted.

Format
int f_delete(const wchar *filename)

Arguments

 Argument Description
 filename file name with or without path to be deleted

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 .
 .
 f_wdelete (“oldfile.txt”);
 f_wdelete (“A:/subdir/oldfile.txt”);
 .
 .
}

See also
f_wopen

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 97 www.hcc-embedded.com

5.10. f_wfilelength

Get the length of a file. If the requested file does not exist or has any error then this
function returns with -1.

Note: This function can also return with the opened file’s size when
_f_findopensize function is allowed to search for it. If _f_findopensize function
returns always with zero, then this feature is disabled.

Format
long f_wfilelength (const wchar *filename)

Arguments

 Argument Description
 filename file name with or without path

Return values

 Return value Description
 filelength length of file
 -1 if any error

Example
int myreadfunc(wchar *filename, char *buffer, long buffsize)
{
 F_FILE *file=f_wopen(wfilename,”r”);

 long size=f_wfilelength(wfilename);
 if (file==-1)
 {
 printf (“%s Cannot be opened!”,filename);
 return 1;
 }

 if (size>buffsize)
 {
 printf (“Not enough memory!”);
 return 2;
 }

 f_read(buffer,size,1,file);
 f_close(file);

 return 0;
}

See also
f_wopen

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 98 www.hcc-embedded.com

5.11. f_wfindfirst

Find first file or subdirectory in specified directory. First call f_wfindfirst function and if
file was found get the next file with f_wfindnext function.
Files with the system attribute set will be ignored.

Note: If this is called with "*.*" and this is not the root directory the first entry
found will be "." - the current directory.

Format
int f_wfindfirst(const wchar *filename, F_WFIND *find)

Arguments

 Argument Description
 filename name of file to find
 find where to store find information

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void mydir(void)
{
 F_WFIND find;
 if (!f_wfindfirst("A:/subdir.*",&find))
 {
 do
 {
 printf (“filename:%s”,find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 printf (“ directory\n”);
 }
 else printf (“ size %d\n”,find.len);
 } while (!f_wfindnext(&find));
 }
}

See also
f_wfindnext

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 99 www.hcc-embedded.com

5.12. f_wfindnext

Finds the next file or subdirectory in a specified directory after a previous call to
f_wfindfirst or f_wfindnext. First call f_wfindfirst function and if file was found get the
rest of the matching files by repeated calls to the f_wfindnext function. Files with the
system attribute set will be ignored.

Note: If this is called with "*.*" and it is not the root directory the first file found
will be ".." - the parent directory.

Format
int f_wfindnext(F_WFIND *find)

Arguments

 Argument Description
 find find information (created by f_wfindfirst call)

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void mydir(void)
{
 F_WFIND find;
 if (!f_wfindfirst("A:/subdir.*",&find))
 {
 do
 {
 printf (“filename:%s”,find.filename);
 if (find.attr&F_ATTR_DIR)
 {
 printf (“ directory\n”);
 }
 else printf (“ size %d\n”,find.len);
 } while (!f_wfindnext(&find));
 }
}

See also
f_wfindfirst

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 100 www.hcc-embedded.com

5.13. f_wstat

Get information about a file. This function retrieves information by filling the F_STAT
structure passed to it. It inserts the filesize, creation time/date, last access date, modified
time/date, and the drive number where the file is located.

Note: This function can also return with the opened file’s size when
_f_findopensize function is allowed to search for it. If _f_findopensize function
returns always with zero, then this feature is disabled.

Format
int f_wstat (const wchar *filename, F_STAT *stat);

Arguments

 Argument Description
 filename file
 stat pointer to F_STAT structure to be filled

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 F_STAT stat;
 if (f_wstat(“myfile.txt”,&stat))
 {
 printf (“error”);
 return;
 }
 printf (“filesize:%d”,stat.filesize);
}

See also
f_wgettimedate, f_wsettimedate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 101 www.hcc-embedded.com

5.14. f_wsettimedate

Set the time and date of a file or directory. (See Section 2 for further information about
porting).

Format
int f_wsettimedate(const wchar *filename, unsigned short ctime,

unsigned short cdate)

Arguments

 Argument Description
 filename file
 ctime creation time of file or directory
 cdate creation date of file or directory

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 f_wmkdir(“subfolder”); /*creating directory */

 f_wsettimedate(“subfolder”,f_wgettime(),f_wgetdate());
}

See also
f_wgettimedate, f_wstat

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 102 www.hcc-embedded.com

5.15. f_wgettimedate

Get time and date information from a file or directory. (See Section 2 for more
information about porting).

Format
int f_wgettimedate(const wchar *filename,unsigned short *pctime,

unsigned short *pcdate)

Arguments

 Argument Description
 filename target file
 pctime pointer to where to store creation time
 pcdate pointer to where to store creation date

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 unsigned short t,d;
 if (!f_wgettimedate(“subfolder”,&t,&d))
 {
 unsigned short sec=(t & 0x001f) << 1;
 unsigned short minute=((t & 0x07e0) >> 5);
 unsigned short hour=((t & 0x0f800) >> 11);
 unsigned short day= (d & 0x001f);
 unsigned short month= ((d & 0x01e0) >> 5);
 unsigned short year=1980+((d & 0xf800) >> 9);
 printf (“Time: %d:%d:%d”,hour,minute,sec);
 printf (“Date: %d.%d.%d”,year,month,day);
 }
 else printf (“File time cannot retrieved!”

}

See also
f_wsettimedate, f_wstat

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 103 www.hcc-embedded.com

5.16. f_wsetattr

This routine is used to set the attributes of a file. Possible file attribute settings are
defined by the FAT file system:

 F_ATTR_ARC Archive
 F_ATTR_DIR Directory
 F_ATTR_VOLUME Volume
 F_ATTR_SYSTEM System
 F_ATTR_HIDDEN Hidden
 F_ATTR_READONLY Read Only

Note: The directory and volume attributes cannot be set by this function.

Format
int f_wsetattr(const wchar *filename, unsigned char attr)

Arguments

 Argument Description
 filename target file
 attr new attribute setting

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 /* make myfile read only and hidden */
 f_wsetattr("myfile.txt", F_ATTR_READONLY | F_ATTR_HIDDEN);
}

See also
f_wgetattr

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 104 www.hcc-embedded.com

5.17. f_wgetattr

This routine is used to get the attributes of a specified file. Possible file attribute settings
are defined by the FAT file system:

 F_ATTR_ARC Archive
 F_ATTR_DIR Directory
 F_ATTR_VOLUME Volume
 F_ATTR_SYSTEM System
 F_ATTR_HIDDEN Hidden
 F_ATTR_READONLY Read Only

Format
int f_wgetattr(const wchar *filename, unsigned char *attr)

Arguments

 Argument Description
 filename target file
 attr pointer to place attribute setting

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example
void myfunc(void)
{
 unsigned char attr;
 /* find if myfile is read only */
 if(!f_wgetattr("myfile.txt",&attr)
 {
 if(attr & F_ATTR_READONLY)
 {
 printf("myfile.txt is read only");
 }
 else printf("myfile.txt is writable");
 }
 else printf("file not found");
}

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 105 www.hcc-embedded.com

5.18. f_wopen

Opens a file. The following modes are allowed to open:

mode description
"r" Open existing file for reading. The stream is positioned at the beginning of the

file.
"r+" Open existing file for reading and writing. The stream is positioned at the

beginning of the file.
"w" Truncate file to zero length or create file for writing. The stream is positioned

at the beginning of the file.
"w+" Open a file for reading and writing. The file is created if it does not exist,

otherwise it is truncated. The stream is positioned at the beginning of the file.
"a" Open for appending (writing to end of file). The file is created if it does not

exist. The stream is positioned at the end of the file.
"a+" Open for reading and appending (writing to end of file). The file is created if it

does not exist. The stream is positioned at the end of the file.
Table 8, f_wopen modes

Note: There is no text mode. The system assumes all files to be accessed in binary
mode only.

Format
F_FILE *f_wopen(const wchar *filename, const wchar *mode);

Arguments

 Argument Description
 filename file to be opened
 mode mode to open file with

Return values

 Return value Description
 F_FILE * pointer to the associated opened file handle or zero if it

could not be opened

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 106 www.hcc-embedded.com

Example
void myfunc(void)
{
 F_FILE *file;
 char c;

 file=f_wopen(“myfile.bin”,”r”);
 if (!file)
 {
 printf (“File cannot be opened!”);
 return;
 }

 f_read(&c,1,1,file); /*read 1 byte */
 printf (“’%c’ is read from file”,c);
 f_close(file);
}

See also
f_read, f_write, f_close, f_wtruncate

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 107 www.hcc-embedded.com

5.19. f_wtruncate

Opens a file for writing and truncates it to the specified length. If the length is greater
than the length of the existing file then the file is padded with zeroes to the truncated
length.

Format
F_FILE *f_wtruncate(const wchar *filename, unsigned long length);

Arguments

 Argument Description
 filename file to be opened
 length new length of file

Return values

 Return value Description
 F_FILE * pointer to the associated opened file handle or zero if it

could not be opened

Example
int mytruncatefunc(wchar *filename, unsigned long length)
{
 F_FILE *file=f_wtruncate(filename,length);

 if(!file)
 printf(“File not found”);
 else
 {
 printf(“File %s truncated to %d bytes,
 filename, length);
 f_close(file);
 }

 return 0;
}

See also
f_wopen

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 108 www.hcc-embedded.com

6. Driver Interface

This section documents the required interface functions to provide a media driver for the
file system.

Reference should also be made to the sample device drivers supplied with the code when
developing a new driver. The easiest starting point is the RAM driver.

6.1. Driver Interface Functions

xxx_initfunc
xxx_getphy
xxx_readsector
xxx_readmultiplesector
xxx_writesector
xxx_writemultiplesector
xxx_getstatus
xxx_release

These are the routines that may be supplied by any driver.

The xxx is a reference to the particular driver being developed e.g. xxx=cfc for compact
flash card driver.

The xxx_initfunc routine is mandatory and is passed to the f_initvolume routine to
initialize a volume. This passes a set of pointers to the driver interface functions below to
the file system.

The xxx_getphy routine is mandatory and is called by the file system to find out the
physical properties of the device e.g. number of sectors.

The xxx_readsector routine is mandatory and is used to read a sector from the target
device.

The xxx_readmultiplesector routine is optional and is used to read a series of sector from
the target device. If not available xxx_readsector will be used.

The xxx_writesector routine is optional and is required to write a sector to the target
device. It is mandatory if format is required.

The xxx_writemultiplesector routine is optional and is used to write a series of sectors to
the target device. If not available xxx_writesector will be used.

The xxx_getstatus routine is optional and is only used for removable media to discover
their status i.e. whether a card has been removed or changed.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 109 www.hcc-embedded.com

The xxx_release routine is optional and can be used to release any resources associated
with a drive when it is removed.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 110 www.hcc-embedded.com

6.2. xxx_initfunc

Passed to the f_initvolume and/or f_createdriver routine to create the driver. The routine
passes to the file system a set of function pointers to access the volume and also the
driver pointer itself. These function pointers are to the other functions documented in this
section.

Format
F_DRIVER *xxx_initfunc(unsigned long driver_param)

Arguments

 Argument Description
` driver_param driver parameter

Return values

 Return value Description
 F_DRIVER * driver pointer or NULL if it is failed

All driver init function should allocate or use a static structure and it has to return with
the filled F_DRIVER structure and it’s pointer value. The F_DRIVER structure is
defined as:

typedef struct F_DRIVER
{
 FN_MUTEX_TYPE mutex; /* mutex for the driver */
 char separated; /* signal if the driver is separated */

 unsigned long user_data; /* user defined data */
 void *user_ptr; /* user define pointer */

 /* driver functions */
 F_WRITESECTOR writesector;
 F_WRITEMULTIPLESECTOR writemultiplesector;
 F_READSECTOR readsector;
 F_READMULTIPLESECTOR readmultiplesector;
 F_GETPHY getphy;
 F_GETSTATUS getstatus;
 F_RELEASE release;
} _F_DRIVER;

All function pointers to inform the file system which functions to call.

The user_ptr and/or user_data is assigned by the driver. The value stored in the
user_ptr and/or user_data is included in F_DRIVER structure and all driver function
calls for that volume. The usage of these fields are determined by the driver but is
typically used to identify one of a set of attached interfaces e.g. if there are multiple
Compact Flash card slots being controlled by a single driver. A call to f_delvolume will
cause the file system to call the driver xxx_release with F_DRIVER structure pointer,

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 111 www.hcc-embedded.com

where the assigned user_ptr, which will then be removed when the driver function
returns.

Note: The driver_param value passed to the xxx_initfunc is determined by the
f_initvolume or f_createdriver call. The driver may use this value in the user_ptr
or user_data field of the returned structure or assign another value as the driver
requires. The file system will make all subsequent calls to driver functions with
the assigned value in the F_DRIVER structure.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 112 www.hcc-embedded.com

6.3. xxx_getphy

This function is called by the file system to discover the physical properties of the drive.
The routine will set the number of cylinders, heads and tracks and the number of sectors
per track.

Format
int xxx_getphy(F_DRIVER *driver,F_PHY *pPhy)

Arguments

 Argument Description
 driver driver structure
 pPhy pointer to physical control structure

Return values

 Return value Description
 0 Success
 else Error codes for this device e.g. device not present

The F_PHY structure is defined as follows:

typedef struct
{
 unsigned short number_of_cylinders; /* number of cylinders */
 unsigned short sector_per_track; /* sectors per track */
 unsigned short number_of_heads; /* number of heads */
 unsigned long number_of_sectors; /* number of sectors */
 unsigned char media_descriptor; /* fix or removable */
 /* use _MEDIADESC_xxx */
} F_PHY;

Note: the number of cylinders is not required by the system. All other parameters
must be set correctly by the xxx_getphy function.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 113 www.hcc-embedded.com

6.4. xxx_readsector

This function is called by the file system to read a complete sector.

Format
int xxx_readsector(F_DRIVER *driver, void *data, unsigned long

sector)

Arguments

 Argument Description
 driver driver structure
 data pointer to write data to from specified sector
 sector number of sector to be written

Return values

 Return value Description
 0 Success
 else Sector out of range

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 114 www.hcc-embedded.com

6.5. xxx_readmultiplesector

This function is called by the file system to read a series of consecutive sectors. This
function is optional – its inclusion will enhance performance on most devices and is
particularly important with Hard Disk Drives.

Format
int xxx_readmultiplesector(F_DRIVER *driver, void *data, unsigned

long sector, int cnt)

Arguments

 Argument Description
 driver driver structure
 data pointer to write data to from specified sector
 sector number of first sector to be written
 cnt number of sectors to write

Return values

 Return value Description
 0 Success
 else Sector out of range

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 115 www.hcc-embedded.com

6.6. xxx_writesector

This function is called by the file system to write a complete sector.

Note. This function maybe omitted if a read-only drive is required.

Format
int xxx_writesector(F_DRIVER *driver, void *data, unsigned long

sector)

Arguments

 Argument Description
 driver driver structure
 data pointer to data to write to specified sector
 sector number of sector to be written

Return values

 Return value Description
 0 Success
 else Sector out of range

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 116 www.hcc-embedded.com

6.7. xxx_writemultiplesector

This function is called by the file system to write a series of consecutive sectors. This
function is optional – its inclusion will enhance performance on most devices and is
particularly important with Hard Disk Drives.

Format
int xxx_writemultiplesector(F_DRIVER *driver, void *data, unsigned

long sector, int count)

Arguments

 Argument Description
 driver driver structure
 data pointer to data to write to specified sector
 sector number of first sector to be written
 cnt number of sectors to write

Return values

 Return value Description
 0 Success
 else Sector out of range

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 117 www.hcc-embedded.com

6.8. xxx_getstatus

This function is called by the file system to check the status of the media. This is used
with removable media to check that a card has not been removed or swapped. The
function returns a bit field of new status information.

Note:. If this drive is for a permanent media (e.g. Hard disk or RAM drive), this
function may be omitted.

Format
int xxx_getstatus(F_DRIVER *driver)

Arguments

 Argument Description
 driver driver structure

Return values

 Return value Description
 0 All Ok
 F_ST_MISSING Card has been removed (Bit field)
 F_ST_CHANGED The card has been removed and replaced (Bit field)
 F_ST_WRITEPROTECT The card is write protected (Bit field)

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 118 www.hcc-embedded.com

6.9. xxx_release

This function is called by the file system to remove a drive. The drive can use this call to
free any resources associated to that drive. Use of this routine in the driver is optional.

This function is called is an f_delvolume API call is made if volume was created by
f_initvolume or this function is called when f_releasedriver is called. After this is
completed the file system removes all record of this volume.

Format
void xxx_relese (F_DRIVER *driver)

Arguments

 Argument Description
 driver driver structure

Return values

none

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 119 www.hcc-embedded.com

7. Compact Flash Card

7.1. Overview

The Compact Flash Card (CFC) driver is designed to operate with all standard compact
flash cards types 1 and 2.

There are three methods for interfacing with a Compact Flash Card:

• True IDE Mode
• PC Memory Mode
• PC I/O Mode

The package contains a sample driver for all three modes.

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

7.2. Porting True IDE Mode

7.2.1. Files
There are three files for using True IDE mode:

cfc_ide.h - header file for ide source files
cfc_ide.c - source code for running IDE without interrupts

7.2.2. Hardware Porting
The following are the header file definitions which must be modified

CFC_TOVALUE - this value is hardware dependent and is a counter for loop expiry.
The developer may replace this with a host OS timeout function.

CFC_CSO - this is for accessing a chip select register and is hardware dependent. The
code assumes a chip select is used to access the card and is removed after access. The
developer must modify this and all accesses to meet the host system design. It should also
be noted that the chip select needs to be set for a relatively long access time (>300ns).
Developers should check the timing in the CFC Specification.

Compact Flash Registers:

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 120 www.hcc-embedded.com

The following definitions are used to access the compact flash registers:

CFC_BASE - Base address of the compact flash card
CFC_DATA - Macro to access the data register
CFC_SECTORCOU - Macro to access the sector count register
CFC_SECTORNO - Macro to access the sector number register
CFC_CYLINDERLO - Macro to access the cylinder low word register
CFC_CYLINDERHI - Macro to access the cylinder high word register
CFC_SELC - Macro to access the select card register
CFC_COMMAND - Macro to access the command register
CFC_STATE - Macro to access the state register (same address as command)

CPLD Logic:

HCC uses CPLD logic in most of its reference designs for CFCards. The following
definitions are used to read from HCC CPLD logic state changes in the card.

CFC_CPLDSTATE - MACRO for reading the state
CFC_CPLDSTATE_CDCH - State bit for card has changed
CFC_CPLDSTATE_CFCD - State bit for card removed

The developer must implement something to reflect this functionality. Contact
support@hcc-embedded.com for reference design information.

7.2.3. Setting IDE Mode
A special sequence needs to be done to force the compact flash card into IDE mode. This
is done in HCC hardware by a sequence executed by the CPLD which:

1. switches off power to the card
2. –OE signal is grounded
3. switches power on

Please reference the CFC specification or contact support@hcc-embedded.com for
reference design information.

7.3. Further Information

HCC-Embedded provide design and consultancy services for developers implementing
Compact Flash Cards. HCC-Embedded also has a range of specific drivers for different
CF configurations such as with interrupts and in PC IO mode.

HCC-Embedded also have several hardware reference designs for Compact Flash
interfaces.

The complete compact flash card specification may be obtained from
www.compactflash.org.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 121 www.hcc-embedded.com

8. MultiMediaCard/Secure Digital Card Driver

8.1. Overview

The sample drivers provided support MMC cards, SD cards Version 1 and 2 and SDHC
cards. Various other derivative types are also supported such as mini-SD cards and
Transflash.

Secure Digital cards are a super-set of MultiMediaCards i.e. they can be used exactly in
the same manner as MMCs but have additional functionality available. In particular they
have an additional two interface pins.

When used in Secure Digital mode there are 3 methods of communicating with the card:

SPI mode

This is available on both MMC and SD cards primarily because of its wide availability
and ease of use. Because many standard CPUs support an SPI interface it reduces the
load on the host system compared to other interface methods. When SPI is implemented
by software control this benefit is lost.

MultiMediaCard Mode

This is a special mode for communicating with MultiMediaCards requiring very few IO
pins. It has the disadvantage that generally software has to control every bit transfer and
clock.

Secure Digital Mode

This is not compatible with MultiMediaCards. It has the basic advantage that it uses four
data lines and thus the potential transfer speeds are higher (up to 10MBytes/sec) but
unless there is specific UART hardware on the host system the load on the host is
generally much higher than in SPI mode (with hardware support).

8.2. Implementation

FAT provides two generic MMC/SD card drivers – one for handling a single MMC card
interface, the other for handling multiple MMC interfaces through a single driver.
These drivers can be found in the /mmc/multi and mmc/single directories. These drivers
do not normally require modification.

In sub-directories from these there drivers are included sample SPI drivers – these must
be ported for a particular target.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 122 www.hcc-embedded.com

8.3. Porting the SPI Driver

The sample drivers are included to give an easy porting reference. There are no standards
for SPI implementations so each target is different though generally this functionality is
easy to realize.

The SPI driver must include the following functions:

void spi_tx1 (unsigned char data8)

Transmits a single byte through the SPI port.

void spi_tx2 (unsigned short data16)

 Transmits two bytes through he SPI port. This may simply call spi_tx1() twice.

void spi_tx4 (unsigned long data32)

Transmits four bytes throught he SPI port. This may simply call spi_tx1() four
times.

void spi_tx512 (unsigned char *buf)

Transmits two bytes throught he SPI port. This may simply call spi_tx1() twice.

unsigned char spi_rx1 (void)

 Receives a single byte.

void spi_rx512 (unsigned char *buf)

 Receives 512 bytes.

void spi_cs_lo (void)

 Set the SPI chip select to low (active) state.

void spi_cs_hi (void)

Set the SPI chip select to high (inactive) state.

int spi_init (void)

 Does any required SPI port initialization.

void spi_set_baudrate (unsigned long br)

 Sets the baud rate of the SPI port.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 123 www.hcc-embedded.com

unsigned long spi_get_baudrate (void)

 Gets the current baud rate of the SPI port.

int get_cd (void)

 Gets the state of the Card Detect signal.

int get_wp (void)

 Gets the state of the Write Protect signal.

t_mmc_dsc *get_mmc_dsc (void)

Gets the MMC parameter structure – maybe used by higher level for information
about the connected card.

The following functions are only required where the driver supports multiple MMC/SD
card interfaces simultaneously.

F_DRIVER *spi_add_device (unsigned long driver_param)

 This function adds a new sub-device or interface to the driver.

int spi_del_device (void *user_ptr)

 This function removes a sub-device or interface from the driver.

int spi_check_device (void *user_ptr)

This function ensures that the interface pointed to by the user_ptr is the active
interface.

8.3.1. Further Information
HCC-Embedded provide design and consultancy services for developers implementing
MultiMediaCard Host interfaces. HCC-Embedded also have several reference designs for
MultiMediaCard Host interfaces.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 124 www.hcc-embedded.com

9. Hard Disk Drive

9.1. Overview

The Hard Disk Drive (HDD) driver is designed to operate with a standard IDE HDD. The
sample driver is designed to handle two HDDs simultaneously.

The design uses some CPLD logic for controlling the interface – for details of this
contact: support@hcc-embedded.com.

9.1.1. Files
There are two files for the HDD driver:

hdd_ide.h - header file for ide source files
hdd_ide.c - source code for running IDE

9.1.2. Hardware Porting
Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

The following are the header file definitions which must be modified

#define description
HDD_TOVALUE this value is hardware dependent and is a counter for loop expiry.

The developer may replace this with a host OS timeout function.
HDD_INIT_TO this value is hardware dependent and is a counter for loop expiry.

The developer may replace this with a host OS timeout function
HDD_BASE0 Base address of the first HDD
HDD_CSBASE0 Chip select base register for first HDD
HDD_CSOPT0 Chip select option register for first HDD
HDD_CONTROL0 Control register in CPLD control logic for HDD.

Table 9, HDD defines

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 125 www.hcc-embedded.com

Hard Disk Drive Registers:

The following definitions are used to access the hard disk drive registers:

Register name description
HDD_DATA Macro to access the data register
HDD_FEATURE Macro to access the feature register
HDD_SECTORCOU Macro to access the sector count register
HDD_SECTORNO Macro to access the sector number register
HDD_CYLINDERLO Macro to access the cylinder low word register
HDD_CYLINDERHI Macro to access the cylinder high word register
HDD_SELC Macro to access the select card register
HDD_COMMAND Macro to access the command register
HDD_STATE Macro to access the state register (same address as command)

Table 10, HDD registers

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 126 www.hcc-embedded.com

10. RAM Driver

The RAM driver is a good starting point for implementing a new driver. The sample
RAM driver is written to support two independent drives.

The RAM driver does not include a ram_getstatus routine because there is no concept of
removing and replacing the drive - it is always present once initialized.

Follow the following steps to build a RAM drive:

1. Include the ramdrv.c and ramdrv.h files in your file system build. This ensures it can
be mounted.

2. Modify the RAMDRIVE_SIZE define to the size of block of RAM you wish to use for
this drive. Nb. This is statically assigned - if you require it to be malloc'd this is a minor
change. Also note - there are minimum sizes for FAT16 and FAT32 - to build a FAT16
file system you must assign 2.8MB of RAM and for a FAT32 32MB. Because of this, it
is normal to run FAT12 in RAM. About 50K is minimum required to run a RAM drive.

3. Call f_initvolume with the number of the volume you wish it to be also a pointer to
the f_ramdrvinit function.

4. Call f_format to format the drive.

void main(void)
{
 /* Initialize File System */
 f_init();

 /* mount RAM drive as drive A: */
 f_initvolume(0, f_ramdrvinit, F_AUTO_ASSIGN);

 /* format the drive */
 /* creates boot sector information and volume */

 f_format(0, F_FAT12_MEDIA); create FAT12 in RAM */

 /* now free to use the drive */
 .
 .
 .
}

The RAM drive may now be accessed as a standard drive using the API calls.

Note: When running the test suite with the RAM drive certain tests will fail
because the drive is destroyed through the simulated power on/off.

Note: Building a RAM driver requires a quantity of RAM. The typical minimum
size of RAM we recommend using for a FAT12 RAM drive is 32K. The actual

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 127 www.hcc-embedded.com

minimum size of a FAT12 RAM drive is 36 sectors (18K) which allows just one
sector (512 bytes) for file storage!

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 128 www.hcc-embedded.com

11. Using CheckDisk

This section describes the usage of the f_checkdisk utility.

FAT file systems were not designed to be failsafe i.e. they were not designed in such a
way that if power is lost unexpectedly they will always be reconstructed in a clean state.
Several types of error may occur such as loss of chains, or lost directory entries. This
utility is designed to correct all errors that can occur from unexpected power loss when
using FAT. Note that if the media is used in a device with a different FAT
implementation then not all errors may be correctable.

This utility must be used stand-alone i.e. no other application should be accessing the file
system while this program is running.

Often a check-disk operation can be performed by more powerful devices such as desktop
computers and in this case it is normal to omit the check-disk files from the build.
However, if there is a non-removable media then the f_checkdisk utility should be
included in the build.

Note: To use check disk the system must have USE_MALLOC defined. This is
necessary because with removable media the size of the table required for check
disk can vary a lot and this memory is only required for the duration of the check
disk process

11.1. Files

To include the f_checkdisk utility in your project add the following files to your build:

 /chkdsk/chkdsk.c
 /chkdsk/chkdsk.h

Note: To use check disk the system must have USE_MALLOC defined. This is
necessary because with removable media the size of the table required for check
disk can vary a lot and this memory is only required for the duration of the check
disk process

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 129 www.hcc-embedded.com

11.2. Build Options

For checkdisk operation these settings needed to be revising:

CHKDSK_LOG_ENABLE

This option should be enabled in chkdsk.h if you want to generate a log file for the
actions of f_checkdisk. This is recommended.

CHKDSK_LOG_SIZE

This specifies the maximum size in RAM to be used for storing check disk log
information.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 130 www.hcc-embedded.com

11.3. f_checkdisk

This function checks the state of the attached media and automatically fixes errors
detected and can create a log file of what it has found.

Format
int f_checkdisk(int drivenum, int param)

Arguments

 Argument Description
 drivenum Number of drive to be checked
 param see below

Return values

 Return value Description
 FC_NO_ERROR Completed Successfully
 FC_WRITE_ERROR Unable to write a sector
 FC_READ_ERROR Unable to read a sector
 FC_CLUSTER_ERROR Unable to access a cluster in the FAT
 FC_ALLOCATION_ERROR Memory allocation failed

Parameter Values:

CHKDSK_ERASE_BAD_CHAIN

The function will automatically erase all bad chains found. Otherwise the file with
the bad chain will be terminated at the last good cluster.

CHKDSK_ERASE_LOST_CHAIN

The function will automatically erase all lost chains found. Otherwise a
LOSTxxxx file will be created with the files contents.

CHKDSK_ERASE_LOST_BAD_CHAIN

The function will automatically erase all bad lost chains. Otherwise a LOSTxxxx
file will be created and this file will be terminated at the last good cluster.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 131 www.hcc-embedded.com

Example
void mychkdsk(void)
{
 int ret;

 /* check drive 0 (“A”) */
 if(ret=f_checkdisk(0, 0)
 {
 printf(“Check Disk Failed: error %d\n”,ret);
 }
 else
 {
 printf(“Check Disk Finished\n”);
 }
 .
 .
 .
}

11.4. Memory Requirements

The f_checkdisk utility requires memory to run. This is typically 1K of static memory
(0.5K if logging is disabled) and 1.5K of stack.

Additionally a two blocks must be allocated dynamically (using malloc) the sizes of
which are approximately:

 (NUMBER_OF_CLUSTERS+4096) / 8

 and

 512 + CHKDSK_LOG_SIZE

The second of these is not required if logging is not enabled – the CHKDSK_LOG_SIZE
is defined in chkdsk.h. The number of clusters on a device can be very large and depends
on how the device is formatted (number of sectors per cluster) and the size of the device.
The number of clusters on a device can be approximated to:

 (SIZE_OF_MEDIA) / (512 * SECTORS_PER_CLUSTER)

The number of sectors per cluster is always in the range 2^n where 0 <= n < 7.

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 132 www.hcc-embedded.com

11.5. Log File Entries

Each time the f_checkdisk utility is run a log file is generated if enabled. The following
messages may appear in the log file:

Directory: <directory_path>

Displays directory where error messages below have been found.

Directory entry deleted: <name>

Either a file entry or a directory entry has been deleted from this directory

Lost entry deleted (found in a subdirectory):/ <LOSTxxxx>

The named lost directory or file entry has been recovered.

Entry deleted (reserved/bad cluster): <name>

The first cluster in a directory entry is unusable or if there is a bad element in the
chain and CHKDSK_ERASE_BAD_CHAIN is set.

File size changed: <name> < old_size> <new_size>

A file was found whose size is smaller than the minimum number of clusters
needed to store that file or the file size is greater than that which can be stored in
the cluster chain. The file size has been changed to the maximum for the clusters
allocated to that file. The user should analyze this file to find the correct
termination point.

Start cluster changed: <name> (either “.” or “..”)

An invalid cluster has been found in a directory entry for either “.” or “..”. This
has been fixed.

Entry deleted (cross linked chain): <name>

If the start cluster of the named file is cross-linked or if any subsequent cluster is
cross-linked and CHKDSK_ERASE_BAD_CHAIN is set then this message will
give the name of the removed file.

Lost directory chain saved: <LOSTxxxx>

A directory chain with no references has been found. It has been recreated with
the name LOSTxxxx.

Lost file chain saved: <LOSTxxxx>

FAT File System – Developer’s Guide

©2003-2007 HCC-Embedded Kft. 133 www.hcc-embedded.com

A file chain with no references has been found. It has been recreated in the root
directory with the name LOSTxxxx.

Lost chain removed (first cluster/cnt): <cluster> <count>

A lost chain has been discovered and removed. This will only appear if
CHKDSK_ERASE_LOST_CHAIN or CHKDSK_ERASE_LOST_BAD_CHAIN
enabled. If not a LOSTxxxx file will be created.

Last cluster changed (bad next cluster value): <name>

In checking the file chain an invalid cluster was discovered. The cluster prior to
the bad cluster is changed to end of file and the file size adjusted to the maximum
for the new size of cluster chain.

Moving lost directory: /<LOSTxxxx>

 A lost directory has been recovered.

'..' changed to root: <LOSTxxxx>

A lost directory entry has been placed in root so its ‘..’ entry has been changed to
point to root.

FAT2 updated according to FAT1.

FAT1 and FAT2 were found to be different and FAT1 is used as the correct
version. This can appear only once at the beginning of the log file.

Long filename entry/entries removed. Count=

This appears at the end of the log file and is a count of the number of long
filename entries that were invalid and unrecoverable.

