
EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 1 www.hcc-embedded.com

HCC-Embedded

Embedded Flash File System

Implementation Guide

Version 1.84

All rights reserved. This document and the associated software are the sole property of HCC-Embedded Kft. Reproduction or
duplication by any means of any portion of this document without the prior written consent of HCC-Embedded Kft. is expressly
forbidden.

HCC-Embedded Kft. reserves the right to make changes to this document and to the related software at any time and without notice.
The information in this document has been carefully checked for its accuracy; however, HCC-Embedded Kft. makes no warranty
relating to the correctness of this document.

0 Contents

0 Contents ... 2
1 System Overview... 5

SUMMARY.. 5
TARGET AUDIENCE .. 6
SYSTEM STRUCTURE/SOURCE CODE.. 7
SYSTEM SOURCE FILE LIST.. 7
SYSTEM SOURCE FILE LIST.. 8
WHAT IS NOR AND NAND FLASH? .. 10

NOR Flash .. 10
NAND/AND Flash... 11
NOR/NAND Summary... 12

REENTRANCY... 13
MUTEX FUNCTIONS.. 13
MAXIMUM TASKS AND CWD .. 14
IMPLEMENTING DRIVERS ... 15
SYSTEM REQUIREMENTS.. 15

Timeouts.. 15
Real Time Clock.. 16
Memory Allocation.. 16
Stack Requirements... 17
Memcpy and Memset... 17

SYSTEM FEATURES .. 18
Power Fail Safety.. 18
Long Filenames... 18
Multiple Volumes .. 18
Multiple Open Files in a Volume .. 19
Static Wear.. 19

GETTING STARTED... 21
2 File API.. 22

FILE SYSTEM FUNCTIONS... 22
FS_GETVERSION ... 23
FS_INIT... 24
FS_MOUNTDRIVE.. 25
FS_FORMAT.. 29
FS_GETFREESPACE ... 30
FS_STATICWEAR... 31
FS_MKDIR .. 32
FS_WMKDIR ... 33
FS_CHDIR ... 34
FS_WCHDIR .. 35
FS_RMDIR... 36
FS_WRMDIR.. 37
FS_GETDRIVE ... 38

©2003-2005 HCC-Embedded Kft. 2 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 3 www.hcc-embedded.com

FS_CHDRIVE ... 39
FS_GETCWD ... 40
FS_WGETCWD... 41
FS_GETDCWD ... 42
FS_WGETDCWD .. 43
FS_RENAME.. 44
FS_WRENAME... 45
FS_MOVE.. 46
FS_WMOVE... 47
FS_DELETE ... 48
FS_WDELETE .. 49
FS_FILELENGTH.. 50
FS_WFILELENGTH... 51
FS_FINDFIRST ... 52
FS_WFINDFIRST .. 53
FS_FINDNEXT ... 54
FS_WFINDNEXT .. 55
FS_SETTIMEDATE ... 56
FS_WSETTIMEDATE .. 57
FS_GETTIMEDATE... 58
FS_WGETTIMEDATE.. 60
FS_SETPERMISSION... 62
FS_WSETPERMISSION.. 63
FS_GETPERMISSION .. 64
FS_WGETPERMISSION ... 65
FS_OPEN... 66
FS_WOPEN.. 68
FS_TRUNCATE .. 70
FS_WTRUNCATE ... 71
FS_CLOSE ... 72
FS_FLUSH ... 73
FS_WRITE ... 74
FS_READ .. 75
FS_SEEK ... 76
FS_TELL ... 77
FS_EOF ... 78
FS_REWIND .. 79
FS_PUTC... 80
FS_GETC... 81

3 NOR Flash Driver .. 82
PHYSICAL DEVICE USAGE.. 82

Reserved blocks... 83
Descriptor Blocks.. 84
File System Blocks .. 86
Example 1.. 87
Example 2.. 88

SECTORS AND FILE STORAGE... 89
FILES.. 90
PHYSICAL INTERFACE FUNCTIONS ... 91

fs_phy_nor_xxx ... 91
ReadFlash ... 93
EraseFlash .. 94
WriteFlash... 95
VerifyFlash.. 96
BlockCopy ... 97

SUBROUTINE DESCRIPTIONS AND NOTES FOR SAMPLE DRIVER 98
4 NAND Flash Driver... 101

OVERVIEW ... 101
PHYSICAL DEVICE USAGE.. 102

Reserved blocks... 102
Descriptor Blocks.. 103
File System Blocks .. 103

WRITE CACHE.. 104
MAXIMUM FILES.. 104
PHYSICAL LAYER FUNCTIONS.. 106
FS_PHY_NAND_XXX... 106
READFLASH... 108
ERASEFLASH.. 109
WRITEFLASH ... 110
VERIFYFLASH .. 111
CHECKBADBLOCK... 112
GETBLOCKSIGNATURE .. 113
WRITEVERIFYPAGE ... 114
BLOCKCOPY .. 115
SUBROUTINE DESCRIPTIONS AND NOTES FOR SAMPLE DRIVER 116

5 RAM Driver ... 118
6 File System Test... 119

©2003-2005 HCC-Embedded Kft. 4 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 5 www.hcc-embedded.com

1 System Overview

Summary

EFFS is a package of source code and documentation designed for flash file system
development on embedded systems.

The following are the major features of the system:

General

ANSI C compliant source code
Extremely robust - guaranteed to be 100% safe against power-failure
Syntax Checked
Easy to understand structure
Scalable
Easy portability to any development environment
Minimal requirements from the host system.

API
 Standard API
 Multi-User Interface
 Long Filenames
 Unicode16 support

NOR Flash Support
 Wear-Leveling
 Bad Block Handling
 All known device types easily ported
 Sample drivers with porting description

NAND Flash Support
 Wear-Leveling
 Bad-Block Management
 ECC algorithm
 All known device types easily ported
 Sample driver with porting description

Target Audience

This guide is intended for use by embedded software engineers who have a knowledge of
the C programming language, standard file API's, and who wish to implement a file
system in any combination of RAM, NAND flash and NOR flash memory.

HCC-Embedded offers hardware and firmware development consultancy to assist
developers with the implementation of a flash file system.

©2003-2005 HCC-Embedded Kft. 6 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 7 www.hcc-embedded.com

System Structure/Source Code

The following diagram illustrates the structure of the file system software.

RAM
Driver
ramdrv.c

NOR
Flash Driver
flashdrv.c

NAND
Flash
driver
nflshdrv.c

Standard File API
fsf.c (fsmf.c)

Intermediate File System
fsm.c

NOR
Physical
Handler
xxx.c

NAND
Physical
Handler
xxx.c

System Source File List

The following is a list of all the files included in the file system:

/src/common/

fsf.c - ffs Standard API
fsf.h - ffs Standard API header
fsmf.c - ffs Standard API Multi-thread wrapper
fsmf.h - ffs Standard API Multi-thread wrapper header
fsm.c - ffs intermediate layer
fsm.h - ffs intermediate layer header
port_s.c - functions to be ported
port_s.h - header file for port functions
udefs.h - user definitions header file

/src/ram/

ramdrv_s.c - RAM driver implementation
ramdrv_s.h - RAM driver header file

/src/nor/

flashdrv.c - NOR flash driver
flashdrv.h - NOR flash driver header

/src/nor/phy/amd/

29lvxxx.c - NOR flash physical handler for AMD 29lxxx
29lvxxx.h - NOR flash physical handler header

/src/nor/phy/atmel/

at49xxxx.c - NOR flash physical handler for Atmel at49xxxx
at49xxxx.h - NOR flash physical handler header

/src/nor/phy/intel/

28f320j3.c - NOR flash physical handler for Intel StrataFlash
28f320j3.h - NOR flash physical handler header

/src/nand/

nflshdrv.c - NAND flash driver
nflshdrv.h - NAND flash driver header

/src/nand/phy/samsung/

K9F2816X0C.c - NAND flash physical handler
K9F2816X0C.h - NAND flash physical handler header

/src/test/

test.c - test program source for exercising the file system
test.h - header file for test program

©2003-2005 HCC-Embedded Kft. 8 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 9 www.hcc-embedded.com

main.c - sample source file for running the test program

Note: The source files are stored in this directory structure to clearly indicate the
functionality of different modules. However, the code makes no assumptions about this;
therefore, the developer may copy all relevant source files into a common directory.

What is NOR and NAND Flash?

The EFFS has been designed to allow the easy integration of all standard flash devices
with the file system but what are these devices?

Flash devices have certain basic properties in common:

• They are designed for the non-volatile storage of code/data

• To write to an area it must be erased first - more precisely it is only possible to

program a 1 to a 0. To change a 0 to a 1 an erase operation must be performed

• They are all divided into erase units (blocks) such that to erase any part a whole

block must be erased

• They all wear-out after a number of erase cycles. This number of erase cycles

guaranteed varies between chip types but an important feature of any file system
using flash is wear management - the system seeks not to over use any one block.

There are two basic types of Flash chips generally available today which have quite
distinct physical characteristics and thus require quite different handling.

NOR Flash

NOR flash has been the cornerstone of non-volatile memory in embedded systems for
many years. Their basic characteristics are that they store data in a non-volatile way and
importantly can be accessed directly from an address bus (Random Access) and thus can
be used to run code.

NOR flash has some drawbacks. Firstly the erase/write time is very slow such that even if
quite small mounts of data are written an erase may be required causing a delay of as
much as 2 seconds. Careful design of the file system has ensured that the number of
occurrences of this is minimized but in certain cases it is not avoidable.

©2003-2005 HCC-Embedded Kft. 10 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 11 www.hcc-embedded.com

NAND/AND Flash

NAND flash (also AND) is a newer type of flash chip technology whose primary
difference is

• They can store approximately 4 times more data than NOR technology for a
similar price.

• They have much faster erase and write times making them ideal for applications

which require regular data storage.

There is a price to be paid for the improved performance:

• Data cannot be accessed via a standard address/data bus - commands must be sent
to set the address and then the data can be read/written sequentially.

• Chips come from the factory with a number of "bad blocks" in them which can

never be used.

• Bits may flip unexpectedly (don't panic! - see below)

Because of these complications these chips are designed with some additional features:

• Each block is divided into a number of read/write pages (typically 512 or 2048
bytes in size)

• Each page has an additional "spare" area associated with it to store error
correction and block management information. By using this area effectively the
general performance and reliability of the devices is very high

Within the NAND flash driver is contained the necessary spare area management and fast
ECC algorithm.

NOR/NAND Summary

The following table summarizes the differences between NOR and NAND flash types -
the entries given are indicative and subject to change between different parts and with
time:

Property NOR NAND
Price 4x/MB x/MB
Size 64KB-64MB 16MB-2GB
Bootable Yes No
Random Access Yes No
Guaranteed Erase Cycles 10,000-100,000 1,000,000

with ECC
Block Erase Time (1) 2 s 2 ms
Write Time (2) 10 us/word 200 us/page
Read Time (2) 100 ns/word 50 us/page

1. Blocks on NAND flash devices are normally smaller than blocks on NOR flash
devices. Since an erase must precede writing to an area the smaller block size is generally
beneficial to a file systems’ performance.
2. The page size for NAND flash devices is typically 512 or 2048 bytes. Because file
system access to the physical device is only in sectors the page access times are the most
important when looking at the performance of the file system.

Note: New devices with new features are being produced all the time. The above table
should be used as an indication. For any particular chip type the specific datasheet for
that device must be consulted.

©2003-2005 HCC-Embedded Kft. 12 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 13 www.hcc-embedded.com

Reentrancy

Certain sections of code must be protected from reentrancy - it is not a good idea to allow
a user to start renaming a file just as another user is deleting it. Reentrancy, however, is
not an issue on systems that can guarantee that at most one application will access the file
system at one time.

Mutex Functions

If reentrancy is required as described in the previous section then the following functions
in port_s.c must be implemented – normally provided by the host RTOS:

mutex_create() – called at volume initialization
mutex_delete() – called at volume deletion
mutex_get() – called when a mutex is required
mutex_put() – called when the mutex is released

Maximum Tasks and CWD

If more than a single task is allowed to access the file system then reentrancy and
maintenance of the current working directory must be considered.

Reentrancy is handled on a per volume basis and is documented in the sections above.

Within the standard API there is no support for the current working directory to be
maintained on a per caller basis. By default the system provides a single cwd which can
be changed by any user. This is maintained on a per volume basis.

An additional option has been provided which enables the file system to keep track of the
cwd on a per calling task basis. To use this option the developer must take the following
steps:

1. Set FS_MAXTASK in udefs.h to the maximum number of tasks that can
simultaneously maintain access to the file system. This effectively creates a table
of cwds for each task.

2. Modify the function fn_gettaskID() in the port_s.c file to get a unique
identifier for the calling task.

3. Ensure that any application using the file system calls fs_releaseFS() with
its unique identifier to free that table entry for use by other applications.

Once this is done each caller will be logged as it acquires the semaphore, and a current
working directory will be associated with it. The caller must release this when it has
finished using the file system e.g. when the calling task is terminated. This frees the entry
for other tasks to use.

©2003-2005 HCC-Embedded Kft. 14 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 15 www.hcc-embedded.com

Implementing Drivers

The driver design has been done to achieve a high level of portability while still
maintaining excellent performance of the system. The basic device architecture includes a
high level driver for each general media type that shares some common properties. This
driver handles issues of FAT maintenance, wear-leveling, etc. Below this lies a physical
device handler which does the translation between the driver and the physical flash
hardware.

A detailed description of how this is implemented for NOR and NAND flash is contained
in later sections of this manual.

Generally only the physical handler needs to be modified when the hardware
configuration changes (different chip type, 1/2/4 devices in parallel etc). HCC-
Embedded has a range of physical handlers available to make the porting process as
simple as possible. HCC-Embedded also do specific porting work as required.

System Requirements

The system is designed to be as open and portable as possible. No assumptions are made
about the functionality or behavior of the underlying operating system. For the system to
work at its best certain porting work should be done as outlined below. This is a very
straightforward task for an experienced engineer.

Timeouts

Flash devices are normally controlled by hardware control signals. As a result there is no
explicit need for any timeouts to control exception conditions. However, some operations
on flash devices are relatively slow and it is often worthwhile scheduling other operations
while waiting for them to complete (e.g. a NOR flash erase is typically 2 seconds and a
NAND flash erase 2 milliseconds).

For NOR flash in the 29lvxxx.c sample driver the DataPoll function is used to check for
the completion of operations. This routine could be modified to force scheduling of the
system or be made to use the event generation mechanism of the host system so that other
operations can be performed while waiting.

For NAND flash in the K9F2816X0C sample driver the nandwaitrb function is used to
check for the completion of operations. This routine could be modified to force
scheduling of the system or be made to use the event generation mechanism of the host
system so that other operations can be performed while waiting.

Real Time Clock

Whenever a file is created or closed (for writing) the system sets a date/time field
associated with each file. To do this the following functions in port_s.c are called:

unsigned short fs_gettime(void)
unsigned short fs_getdate(void)

This function by default enters zeroes into these fields. When porting to a system with a
real time clock, this function should be modified to set the correct current time and date
from your system. A recommended format for how this can be done is given by the
following shift and mask definitions in the fsm.h file:

/* definitions for time */

#define FS_CTIME_SEC_SH 0
#define FS_CTIME_SEC_MASK 0x001f /* 0-30 in 2seconds */
#define FS_CTIME_MIN_SH 5
#define FS_CTIME_MIN_MASK 0x07e0 /* 0-59 minutes */
#define FS_CTIME_HOUR_SH 11
#define FS_CTIME_HOUR_MASK 0xf800 /* 0-23 hours */

/* definition for date */

#define FS_CDATE_DAY_SH 0
#define FS_CDATE_DAY_MASK 0x001f /* 0-31 days */
#define FS_CDATE_MONTH_SH 5
#define FS_CDATE_MONTH_MASK 0x01e0 /* 1-12 months */
#define FS_CDATE_YEAR_SH 9
#define FS_CDATE_YEAR_MASK 0xfe00 /* 0-119 (year 1980+value) */

Note: Although this format is recommended, the developer may use these two 16 bit
fields as they require - they will simply be updated according to the developers
replacement function each time a file is created or closed.

Memory Allocation

There are some larger buffers required by the file system to handle FATs in RAM and
also to buffer write processes.

There is a call to each driver to get the specific size of memory required for that drive. It
is then up to the user to allocate this memory from their system.

These buffers vary in size depending on the precise chips being used and their
configuration. For further information see description of fs_mountdrive function and the
fs_getmem_xxx functions in the relevant driver sections.

©2003-2005 HCC-Embedded Kft. 16 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 17 www.hcc-embedded.com

Stack Requirements

The file system functions are always called in the context of the calling thread or task.
Naturally the functions require stack space and the developer should allow for this in
applications calling file system functions. Typically calls to the file system will use
<2Kbytes of stack.

Memcpy and Memset

The system includes memcpy and memset functions which are provided as simple byte
copy routines. To get best performance from the target platform the developer should
replace these routines with routines developed specifically for the target system. As in all
embedded systems the copy routines are time consuming but optimized versions can
yield excellent performance benefits.

System Features

Power Fail Safety

The flash file system is entirely power fail safe. The system may be stopped at any point
and restarted and no data will be lost - the previous completed state of the file system will
be restored.

When a file is closed its data is automatically flushed to the file system. Until this close
takes place the file is preserved in its previous state. The user may also use the fs_flush
command to write the current state of the file to the media and thus updating its failsafe
state.

Long Filenames

The file system supports file names of almost unlimited length. The filename handling is
efficient – it is built from a chain of small fragments taken from the descriptor block. If a
filename is longer than FS_MAXDENAME (default 13) an additional FS_MAXLFN
(default 11) byte block is allocated to store the longer name. These additional blocks are
added by the file system automatically.

In the fsm.h there is a FS_MAXLNAME define which sets the maximum allowed name
length. By default this is set to FS_MAXDENAME+4*FS_MAXLFN (57 bytes). The
developer may increase (or decrease) this by multiples of FS_MAXLFN bytes by
changing the multiplier of FS_MAXLFN in the FS_MAXLNAME definition. This sets
the number of these structures that may be used for a single name.

Long filenames uses memory from the descriptor blocks in the file system. The system
uses an efficient algorithm for allocating additional blocks in units of FS_MAXLFN.
However, the use of long filenames reduces the number of file and directory entries that
can be stored.

Multiple Volumes

The file system supports multiple volumes. Each volume must have its own driver routine
which normally then has its own physical routine (except for the RAM drive).

The maximum number of volumes allowed by your system should be set in the
FS_MAXVOLUME definition in udefs.h. Set this value to the maximum volume number
used. (E.g. if only RAM drive is used set the value to 1, if RAM drive and NOR flash
then set this value to 2, etc).

Volume letters are assigned by passing a parameter in the fs_mountdrive function.

©2003-2005 HCC-Embedded Kft. 18 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 19 www.hcc-embedded.com

Multiple Open Files in a Volume

The file system allows multiple files to be opened simultaneously on a volume or on
different volumes. Within each driver (ramdrv_s.c, flashdrv.c, nflshdrv.c) there is a
MAXFILE definition which determines the number of files that the file system allows to
be opened simultaneously on that volume at any particular time.
For each file that may be allowed to be opened simultaneously an array must be allocated
which contains a sector size buffer. Thus, increasing MAXFILES for a particular volume
increases the RAM required by the system.

Static Wear

Flash devices are usually manufactured to a specification which includes a guaranteed
number of write-erase cycles that can be performed on each block before it may develop
a fault. Because of this is important to use the blocks in a device “evenly” if the device is
to be used to its maximum lifetime.

The file system uses a process called dynamic wear to allocate the least use blocks from
those available. However, in systems where there are large areas of static data (e.g. the
executable binary for the system) then the areas where this is stored may be written only
once leaving a relatively small section of the device to handle the much more heavily
used files.

For this reason a process called static wear is introduced. When the fs_staticwear
function is called it searches for blocks that have been used much less than the most used
blocks in the system and if this difference is greater than a defined threshold
(FS_STATIC_DISTANCE) then these two blocks will be exchanged in the system.

To use the static functionality the files fstaticw.c and fstaticw.h must be included in your
project. In the header file two defines should be set:

FS_STATIC_DISTANCE – this specifies the minimum difference between a heavily
used block and a lightly block before a static swap is allowed. This number should not be
too small to cause unnecessary swapping. A reasonable figure to choose is between 1%
and 10% or the guaranteed erase/write cycles of the target chip.

FS_STATIC_PERIOD - this specifies how often this function will actually attempt to do
a wear. This may be used in systems where fs_staticwear is called very frequently to
reduce the number of times that the function will be executed. This reduces unnecessary
checking of the system. If you always know that the system is going to be idle when
fs_staticwear is called then this may be set to 1 so that it is always executed – for
instance if you just do a few calls to fs_staticwear at start-up. If it is called at every
available opportunity then you may want to actually execute this less frequently.

When the static wear function is executing the file system is not accessible. The length of
time the static wear function takes is dependent on the specification of the target chips
being used and in particular the time required to erase a block and the time required to
copy one block to another.

For static wear to function an additional driver function, BlockCopy, must also be
provided. See driver sections for information as to how to implement this function. It is
important to provide a highly optimized version of this, preferably using any special copy
functions specific to the target chip, to achieve the best system performance and least
disruption.

Do I need static wear?

In many cases this is an unnecessary overhead – this can only be assessed by looking at
how your product is to be used and considering the specification of your target devices.
Many devices have up to 1 million erase/write cycles per block guaranteed and in many
applications this number will not be reached in the lifetime of the product.

When should I do static wear?

Because wear involves swapping blocks in the file system all access is excluded for the
duration of the process. Thus, if there are time critical features to your flash access
applications then it is preferable to do static wear during idle moments. One useful time is
during system boot where several static wears could be done without having a major
impact on the boot time of the system.

©2003-2005 HCC-Embedded Kft. 20 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 21 www.hcc-embedded.com

Getting Started

To get your development started as efficiently as possible we recommend the following
steps:

1. Build the file system using just the standard API (fsf.c), the intermediate file
system (fsm.c) and the RAM driver (ramdrv_s.c) – including the relevant header
files. In this way you can build a file system that runs in RAM with little or no
dependency on your hardware platform.

2. Build a test program to exercise this file system and check how it works in RAM.
All build and integration issues can thus be addressed before worrying about the
specific flash devices functionality.

3. Now add the next volume to the system either a NOR drive or NAND drive
depending on your requirements.
For NOR drive:
 Add flashdrv.c to the build.
For NAND drive:

 Add nflshdrv.c to the build.
4. Now add a physical device driver to the build.

For NOR chips:
Read Section 4 "NOR Flash Driver" carefully and create a driver meeting
your specific needs based on the available sample drivers.

For NAND chips:
Read Section 5 "NAND Flash Driver" carefully and create a driver
meeting your specific needs based on the available sample drivers.

5. Add new volumes by repeating steps 3 and 4.

2 File API

File System Functions

Common functions

• fs_getversion
• fs_init
• fs_mountdrive

• fs_format
• fs_getfreespace
• fs_staticwear

Drive\Directory handler functions

• fs_getdrive
• fs_chdrive
• fs_getcwd
• fs_wgetcwd
• fs_getdcwd
• fs_wgetdcwd

• fs_mkdir
• fs_wmkdir
• fs_chdir
• fs_wchdir
• fs_rmdir
• fs_wrmdir

File functions

• fs_rename
• fs_wrename
• fs_move
• fs_wmove
• fs_delete
• fs_wdelete
• fs_filelength
• fs_wfilelength
• fs_findfirst
• fs_wfindfirst
• fs_findnext

• fs_settimedate
• fs_wsettimedate
• fs_gettimedate
• fs_gettimedate
• fs_setpermission
• fs_wsetpermission
• fs_getpermission
• fs_wgetpermission
• fs_truncate
• fs_wtruncate

Read/Write functions

• fs_open
• fs_wopen
• fs_close
• fs_flush
• fs_write
• fs_read

• fs_seek
• fs_tell
• fs_eof
• fs_rewind
• fs_putc
• fs_getc

©2003-2005 HCC-Embedded Kft. 22 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 23 www.hcc-embedded.com

fs_getversion

This function is used to retrieve file system version information.

Format
char * fs_getversion(void)

Arguments
None

Return values

 Return value Description
 char * pointer to null terminated ASCII string

Example:

void display_fs_version(void) {

 printf("File System Version: %s",fs_getversion());
}

fs_init
This function initializes file system. This function must be called once to
initialize file system before using any other file system function.

Format

void fs_init(void)

Arguments
None

Return values
None

Example
void main(void) {

fs_init(); /* init file system */
.
.

}

See also
fs_mountdrive, fs_format

©2003-2005 HCC-Embedded Kft. 24 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 25 www.hcc-embedded.com

fs_mountdrive

This is used to mount and map a new drive.

This function must be called with five parameters:

drivenum

Number of the drive to be mounted where 0 is drive 'A', 1 is drive 'B' etc.
This has the maximum value of (FS_MAXVOLUME-1) in fsm.h.

buffer

This is a pointer for a buffer area to be used by the generic driver. Its size is
dependent upon the specific devices and configuration used.

For a RAM drive a buffer of the size required for the whole RAM file system
should be allocated as shown in the example below.

For a NOR drive the generic NOR flash function fs_getmem_flashdrive must
be called with a pointer to the get physical function of the specific physical
chip driver to be mounted (e.g. fs_phy_nor_29lvxxx). This function then
calculates and returns the amount of memory that must be allocated for this
physical driver. The caller must then allocate this amount of memory and pass
its pointer and size to the fs_mountdrive function. See example code below.

For a NAND drive the generic NAND flash function
fs_getmem_nandflashdrive must be called with a pointer to the get physical
function of the specific physical chip driver to be mounted (e.g.
fs_phy_nand_K9F2816X0C). This function then calculates and returns the
amount of memory that must be allocated for this physical driver. The caller
must then allocate this amount of memory and pass its pointer and size to the
fs_mountdrive function. See example code below.

buffsize

This is the size of the allocated buffer being passed to the mount function.

mountfunc

This is a pointer to the generic mount function for the media type required.

The mountfunc is a driver function that describes which drive needs to be
mounted. This calls the physical driver function to be associated with it.

Standard examples are:

fs_mount_ramdrive - for using drive as RAM drive
fs_mount_flashdrive - for using drive as NOR flash drive
fs_mount_nandflashdrive - for using drive as NAND flash drive

phyfunc

This is a pointer to a physical driver function for the desired device which is
called by the generic mount function to get information about how to use the
device. For a RAM drive this function is NULL.

Standard examples are:

 fs_phy_nor_sim - for PC emulation of NOR physical
 fs_phy_nor_29lvxxx - for AMD flash
 fs_phy_nand_sim - for PC emulation of NAND physical
 fs_phy_nand_ K9F2816X0C - for Samsung NAND flash

©2003-2005 HCC-Embedded Kft. 26 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 27 www.hcc-embedded.com

Format
int fs_mountdrive(int drivenum,

void *buffer,
long buffsize,
FS_DRVMOUNT mountfunc,
FS_PHYGETID phyfunc)

Arguments
 Argument Description
 drivenum number of drive to be mounted (0='A' etc.)
 buffer buffer pointer to be used by file system
 buffsize size of buffer
 mountfunc mount function for selected drive type
 phyfunc physical driver for specific chip type

Return values

 Return value Description
FS_VOL_OK successfully mounted
FS_VOL_NOTMOUNT not mounted
FS_VOL_NOTFORMATTED drive is mounted but drive is not formatted
FS_VOL_NOMEMORY not enough memory, drive is not mounted
FS_VOL_NOMORE no more drive available (FS_MAXVOLUME)
FS_VOL_DRVERROR mount driver error, not mounted

Example
/* this example shows how to mount Ramdrive, */
/* FLASH drive and NANDFLASHdrive */

char p0buffer[0x100000]; /* 1M */

void main(void) {
 char *p1buffer, *p2buffer;
 long memsize;

fs_init();

fs_mountdrive(

0,
p0buffer,
sizeof(p0buffer),
fs_mount_ramdrive, 0);

/* Drive A will be RAM drive */

memsize=fs_getmem_flashdrive(fs_phy_nor_29lvxxx);
if (!memsize) {

/* flash is not identified */
}
p1buffer=(char*)malloc(memsize);
if (!p1buffer) {

/* Not enough memory to allocate */
}
fs_mountdrive(
 1,

p1buffer,
memsize,
fs_mount_flashdrive,
fs_phy_nor_29lvxxx);
/* Drive B will be NOR flash drive, with */
/* AMD physical driver */

memsize=fs_getmem_nandflashdrive(fs_phy_nand_K9F28
16X0C);
if (!memsize) {

/* nand flash is not identified, */
}
p2buffer=(char*)malloc(memsize);
if (!p2buffer) {

/* Not enough memory to allocate */
}
fs_mountdrive(
 2,

p2buffer,
memsize,
fs_mount_nandflashdrive,
fs_phy_nand_K9F2816X0C);

/* Drive C will be NAND flash drive with */
/* Samsung physical */

}

See also

fs_init, fs_format

©2003-2005 HCC-Embedded Kft. 28 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 29 www.hcc-embedded.com

fs_format

Format a drive. All data will be destroyed on the drive with the exception of
the wear-level information on a FLASH device.

Format

int fs_format(int drivenum)

Arguments

 Argument Description
 drivenum which drive needs to be formatted

Return values

 Return value Description
 FS_NOERR drive successfully formatted
 FS_INVALIDDRIVE if drive does not exist
 FS_BUSY if there is any file open
 FS_NOTFORMATTED if drive cannot be formatted

Example
char buffer[0x30000];

void myinitfs(void) {
 int ret;

fs_init();
 ret=fs_mountdrive(0,

 buffer,
 sizeof(buffer),
 fs_mount_flashdrive,
 fs_phy_nor_29lvxxx);

/* Drive A will be NOR flash drive */

if (ret==FS_VOL_OK) return; /* initialized */
if (ret==FS_VOL_NOTFORMATTED) {
 ret=fs_format(0); /* format drive A */

if (ret==FS_NOTERR) return; /* formatted */
}

initializationfailed:
 }

See also

fs_init, fs_mountdrive

fs_getfreespace

This function fills a user allocated structure with information about the usage
of the volume specified. The information returned is the total size of the
drive, the free space on the drive, the used space on the drive and the bad
space on the drive.

Format

int fs_getfreespace(int drvnum, F_SPACE *pSpace)

Arguments
 Argument Description
 drivernum number of drive
 pSpace pointer to user’s free space structure

Return values
 Return value Description
 FS_NOERR Success
 else Error code

Example
void info(void) {

int ret;
F_SPACE space;

ret = fs_getfreespace(fs_getdrive(),&space);

if(!ret)
{

printf("There are %d total bytes,\
 %d free bytes,\
 %d used bytes,\
 %d bad bytes.\n",

space.total,space.free,\
space.used,space.bad);

}
else
 printf(“Error %d\n”,ret);

}

©2003-2005 HCC-Embedded Kft. 30 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 31 www.hcc-embedded.com

fs_staticwear

This function is called to even the wear of blocks which are rarely used.

Read “Static Wear” part of Section 1 of this manual for information about
when and how to use this function.

Format

int fs_staticwear(int drvnum)

Arguments
 Argument Description
 drvnum number of target drive

Return values
 Return value Description
 FS_NOERR Success
 else Error code

Example
void idle(void) {

int ret;

/* try static wear on Drive A */

ret = fs_staticwear(0);

if(!ret)

printf("Static Wear Done\n”);
}
else
 printf(“Error in static wear!!\n”,ret);

}

fs_mkdir

Make a new directory.

Format

int fs_mkdir(const char *dirname)

Arguments
 Argument Description
 dirname new directory name to create

Return values

 Return value Description
 FS_NOERR new directory name created successfully
 FS_INVALIDNAME directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_INVALIDDIR invalid path
 FS_DUPLICATED entry already exists
 FS_NOMOREENTRY directory is full

Example
void myfunc(void) {

.

.
fs_mkdir(“subfolder”); /* creating directory */
fs_mkdir(“subfolder/sub1”);
fs_mkdir(“subfolder/sub2”);
fs_mkdir(“a:/subfolder/sub3”
.
.

}

See also
fs_chdir, fs_rmdir

©2003-2005 HCC-Embedded Kft. 32 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 33 www.hcc-embedded.com

fs_wmkdir

Make a new directory with Unicode16 name.

Format

int fs_wmkdir(const W_CHAR *dirname)

Arguments
 Argument Description
 dirname new Unicode16 directory name to create

Return values

 Return value Description
 FS_NOERR new directory name created successfully
 FS_INVALIDNAME directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_INVALIDDIR invalid path
 FS_DUPLICATED entry already exists
 FS_NOMOREENTRY directory is full

Example
void myfunc(void) {

.

.
fs_wmkdir(“subfolder”); /* creating directory */
fs_wmkdir(“subfolder/sub1”);
fs_wmkdir(“subfolder/sub2”);
fs_wmkdir(“a:/subfolder/sub3”
.
.

}

See also
fs_wchdir, fs_wrmdir

fs_chdir

Change current working directory

Format

int fs_chdir(const char *dirname)

Arguments
 Argument Description
 dirname new directory name to change

Return values

 Return value Description
 FS_NOERR directory has been changed successfully
 FS_INVALIDNAME directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND path not found

Example
void myfunc(void) {

.

.
fs_mkdir(“subfolder”);
fs_chdir(“subfolder”); /* change directory */
fs_mkdir(“sub2”);
fs_chdir(“..”); /* go to upward */
fs_chdir(“subfolder/sub2”);

/* goto into sub2 dir */
.
.

}

See also

fs_mkdir, fs_rmdir, fs_getcwd, fs_getdcwd

©2003-2005 HCC-Embedded Kft. 34 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 35 www.hcc-embedded.com

fs_wchdir

Change current working directory with Unicode16 name

Format

int fs_wchdir(const W_CHAR *dirname)

Arguments
 Argument Description
 dirname new Unicode16 directory name to change

Return values

 Return value Description
 FS_NOERR directory has been changed successfully
 FS_INVALIDNAME directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND path not found

Example
void myfunc(void) {

.

.
fs_wmkdir(“subfolder”);
fs_wchdir(“subfolder”); /* change directory */
fs_wmkdir(“sub2”);
fs_wchdir(“..”); /* go to upward */
fs_wchdir(“subfolder/sub2”);

/* goto into sub2 dir */
.
.

}

See also

fs_wmkdir, fs_wrmdir, fs_wgetcwd, fs_wgetdcwd

fs_rmdir

Remove directory. Directory has to be empty when it is removed, otherwise
returns with error code without removing.

Format

int fs_rmdir(const char *dirname)

Arguments

 Argument Description
 dirname directory name to remove

Return values
 Return value Description
 FS_NOERR directory name is removed successfully
 FS_INVALIDNAME directory name contains invalid characters
 FS_NOTFOUND directory not found
 FS_INVALIDDIR directory name is not a directory
 FS_NOTEMPTY directory not empty

Example
void myfunc(void) {

.

.
fs_mkdir(“subfolder”); /* creating directories */
fs_mkdir(“subfolder/sub1”);
.
. doing some work
.
fs_rmdir(“subfolder/sub1”);
fs_rmdir(“subfolder”); /* removes directory */
.
.

}

See also
fs_mkdir, fs_chdir

©2003-2005 HCC-Embedded Kft. 36 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 37 www.hcc-embedded.com

fs_wrmdir

Remove Unicode16 directory. Directory has to be empty when it is removed,
otherwise returns with error code without removing.

Format

int fs_wrmdir(const W_CHAR *dirname)

Arguments

 Argument Description
 dirname Unicode16 directory name to remove

Return values

 Return value Description
 FS_NOERR directory name is removed successfully
 FS_INVALIDNAME directory name contains invalid characters
 FS_NOTFOUND directory not found
 FS_INVALIDDIR directory name is not a directory
 FS_NOTEMPTY directory not empty

Example
void myfunc(void) {

.

.
fs_wmkdir(“subfolder”); /* creating directories */
fs_wmkdir(“subfolder/sub1”);
.
. doing some work
.
fs_wrmdir(“subfolder/sub1”);
fs_wmdir(“subfolder”); /* removes directory */
.
.

}

See also
fs_wmkdir, fs_wchdir

fs_getdrive

Get current drive number

Format

int fs_getdrive(void)

Arguments
none

Return values
 Return value Description
 Current Drive 0-A, 1-B, 2-C etc

Example
void myfunc(void) {

int currentdrive;
.
currentdrive=fs_getdrive();
.
.

}

See also

fs_chdrive

©2003-2005 HCC-Embedded Kft. 38 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 39 www.hcc-embedded.com

fs_chdrive

Change current drive.

Format

int fs_chdrive(int drivenum)

Arguments
 Argument Description
 drivenum drive number to be current drive (0-A,1-B,2-C,…)

Return values

 Return value Description
 FS_NOERR success
 FS_INVALIDDRIVE drive number is invalid

Example
void myfunc(void) {

.

.
fs_chdrive(0); /* select drive A */
.
.

}

See also

fs_getdrive

fs_getcwd

Get current working folder on current drive.

Format

int fs_getcwd(char *buffer, int maxlen)

Arguments
 Argument Description
 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 FS_NOERR Success
 FS_INVALIDDRIVE Current drive is invalid

Example

void myfunc(void) {

char buffer[FS_MAXPATH];

if (!fs_getcwd(buffer, FS_MAXPATH)) {
 printf (“current directory is %s”,buffer);
}
else {
 printf (“Drive Error”)
}

}

See also

fs_chdir, fs_getdcwd

©2003-2005 HCC-Embedded Kft. 40 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 41 www.hcc-embedded.com

fs_wgetcwd

Get current working folder on current drive.

Format

int fs_wgetcwd(W_CHAR *buffer, int maxlen)

Arguments
 Argument Description
 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 FS_NOERR Success
 FS_INVALIDDRIVE Current drive is invalid

Example

void myfunc(void) {

W_CHAR buffer[FS_MAXPATH];

if (!fs_wgetcwd(buffer, FS_MAXPATH)) {
 wprintf (“current directory is %s”,buffer);
}
else {
 wprintf (“Drive Error”)
}

}

See also

fs_wchdir, fs_wgetdcwd

fs_getdcwd

Get current working folder on selected drive.

Format

int fs_getdcwd(int drivenum, char *buffer,
int maxlen)

Arguments
 Argument Description
 drivenum specify drive (0-A, 1-B, 2-C)
 buffer where to store current working directory string
 maxlen length of the buffer

Return values
 Return value Description
 FS_NOERR Success
 FS_INVALIDDRIVE Current drive is invalid

Example

void myfunc(int drivenum) {

char buffer[FS_MAXPATH];

if (!fs_getcwd(drivenum,buffer, FS_MAXPATH)) {
 printf (“current directory is %s”,buffer);
 printf (“on drive %c”,drivenum+’A’);
}
else {
 printf (“Drive Error”)
}

}

See also

fs_chdir, fs_getcwd

©2003-2005 HCC-Embedded Kft. 42 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 43 www.hcc-embedded.com

fs_wgetdcwd

Get current working folder on selected drive.

Format

int fs_wgetdcwd(int drivenum, W_CHAR *buffer,
int maxlen)

Arguments
 Argument Description
 drivenum specify drive (0-A, 1-B, 2-C)
 buffer where to store current working directory string
 maxlen length of the buffer

Return values
 Return value Description
 FS_NOERR Success
 FS_INVALIDDRIVE Current drive is invalid

Example

void myfunc(int drivenum) {

W_CHAR buffer[FS_MAXPATH];

if (!fs_wgetcwd(drivenum,buffer, FS_MAXPATH)) {
 wprintf (“current directory is %s”,buffer);
 wprintf (“on drive %c”,drivenum+’A’);
}
else {
 wprintf (“Drive Error”)
}

}

See also

fs_wchdir, fs_wgetcwd

fs_rename

Rename a file or directory. This function has been obsoleted by fs_move.

Format

int fs_rename(const char *filename, const char
*newname)

Arguments
 Argument Description
 filename file or directory name with/without path
 newname new name of file or directory

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME filename contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found
 FS_BUSY file is open for read or write
 FS_DUPLICATED name already exists

Example
void myfunc(void) {

.

.
fs_rename (“oldfile.txt”,”newfile.txt”);
fs_rename (“A:/subdir/oldfile.txt”,”newfile.txt”);
.
.

}

See also
fs_mkdir, fs_open, fs_move

©2003-2005 HCC-Embedded Kft. 44 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 45 www.hcc-embedded.com

fs_wrename

Rename a file or directory with unicode16 name. This function has been
obsoleted by fs_wmove.

Format

int fs_rename(const W_CHAR *filename, const
W_CHAR *newname)

Arguments

 Argument Description
 filename unicode16 file or directory name with/without path
 newname new unicode16 name of file or directory

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME filename contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found
 FS_BUSY file is open for read or write
 FS_DUPLICATED name already exists

Example
void myfunc(void) {

.

.
fs_wrename (“oldfile.txt”,”newfile.txt”);
fs_wrename (“A:/dir/oldfile.txt”,”newfile.txt”);
.
.

}

See also
fs_wmkdir, fs_wopen, fs_wmove

fs_move

Moves a file or directory – the original is lost. This function obsoletes
fs_rename(). The source and target must be in the same volume.

Format

int fs_move(const W_CHAR *filename, const char
*wnewname)

Arguments

 Argument Description
 filename file or directory name with/without path
 newname new name of file or directory with/without path

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME filename contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found
 FS_BUSY file is open for read or write
 FS_DUPLICATED name already exists

Example
void myfunc(void) {

.

.
fs_move (“oldfile.txt”,”newfile.txt”);
fs_move (“A:/subdir/oldfile.txt”,

“A:/newdir/oldfile.txt”);
.
.

}

See also
fs_mkdir, fs_open, fs_rename

©2003-2005 HCC-Embedded Kft. 46 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 47 www.hcc-embedded.com

fs_wmove

Moves a file or directory with unicode16 name. The original is lost. This
function obsoletes fs_wrename. The source and target must be in the same
volume.

Format

int fs_wmove(const W_CHAR *filename, const
W_CHAR *newname)

Arguments
 Argument Description
 filename unicode16 file or directory name with/without path
 newname new unicode16 name of file or directory

Return values

 Return value Description
 FS_NOERR success
 FS_INVALIDNAME filename contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found
 FS_BUSY file is open for read or write
 FS_DUPLICATED name already exists

Example
void myfunc(void) {

.

.
fs_wmove (“oldfile.txt”,”newfile.txt”);
fs_wmove (“A:/subdir/oldfile.txt”,

“A:/newdir/oldfile.txt”);
.
.

}

See also
fs_wmkdir, fs_wopen, fs_wrename

fs_delete

Delete a file.

Format

int fs_delete(const char *filename)

Arguments
 Argument Description
 filename file name with/without path to be deleted

Return values

 Return value Description
 FS_NOERR success
 FS_INVALIDNAME filename contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file not found
 FS_BUSY file is open for read or write
 FS_INVALIDDIR file name is a directory name

Example
void myfunc(void) {

.

.
fs_delete (“oldfile.txt”);
fs_delete (“A:/subdir/oldfile.txt”);
.
.

}

See also
fs_open

©2003-2005 HCC-Embedded Kft. 48 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 49 www.hcc-embedded.com

fs_wdelete

Delete a file with unicode16 name.

Format

int fs_wdelete(const W_CHAR *filename)

Arguments
 Argument Description
 filename file name with/without path to be deleted

Return values

 Return value Description
 FS_NOERR success
 FS_INVALIDNAME filename contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file not found
 FS_BUSY file is open for read or write
 FS_INVALIDDIR file name is a directory name

Example
void myfunc(void) {

.

.
fs_wdelete (“oldfile.txt”);
fs_wdelete (“A:/subdir/oldfile.txt”);
.
.

}

See also
fs_wopen

fs_filelength

Get the length of a file.

Format

long fs_filelength (char *filename)

Arguments
 Argument Description
 filename file name with or without path

Return values

 Return value Description
 filelength length of file

Example
int myreadfunc(char *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_open(filename,”r”);
long size=fs_filelength(filename);
if (!file) {
 printf (“%s Cannot be opened!”,filename);
 return 1;
}
if (size>buffsize) {
 printf (“Not enough memory!”);

return 2;
}

fs_read(buffer,size,1,file);
fs_close(file);

return 0;

}

See also
fs_open

©2003-2005 HCC-Embedded Kft. 50 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 51 www.hcc-embedded.com

fs_wfilelength

Get the length of a file with unicode16 name.

Format

long fs_wfilelength (W_CHAR *filename)

Arguments
 Argument Description
 filename unicode16 file name with or without path

Return values

 Return value Description
 filelength length of file

Example
int myreadfunc(W_CHAR *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_wopen(filename,”r”);
long size=fs_wfilelength(filename);
if (!file) {
 printf (“%s Cannot be opened!”,filename);
 return 1;
}
if (size>buffsize) {
 printf (“Not enough memory!”);

return 2;
}

fs_read(buffer,size,1,file);
fs_close(file);

return 0;

}

See also
fs_wopen

fs_findfirst

Find first file or subdirectory in specified directory. First call fs_findfirst
function and if file was found get the next file with fs_findnext function.

Format

int fs_findfirst(const char *filename,FS_FIND
*find)

Arguments

 Argument Description
 filename name of file to find
 find where to store find information

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_INVALIDDIR invalid path
 FS_NOTFOUND file not found

Example
void mydir(void) {

FS_FIND find;
if (!fs_findfirst("A:/subdir/*.*",&find)) {

do {
 printf (“filename:%s”,find.filename);

 if (find.attr&FS_ATTR_DIR) {
 printf (“ directory\n”);
 }
 else {
 printf (“ size %d\n”,find.len);

 }
} while (!fs_findnext(&find));

}
}

See also

fs_findnext

©2003-2005 HCC-Embedded Kft. 52 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 53 www.hcc-embedded.com

fs_wfindfirst

Find first file or subdirectory in specified directory. First call fs_wfindfirst
function and if file was found get the next file with fs_wfindnext function.

Format

int fs_wfindfirst(const W_CHAR *filename,
FS_WFIND *find)

Arguments

 Argument Description
 filename unicode16 name of file to find
 find where to store find information

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_INVALIDDIR invalid path
 FS_NOTFOUND file not found

Example
void mydir(void) {

FS_WFIND find;
if (!fs_wfindfirst("A:/subdir/*.*",&find)) {

do {
 printf (“filename:%s”,find.filename);

 if (find.attr&FS_ATTR_DIR) {
 printf (“ directory\n”);
 }
 else {
 printf (“ size %d\n”,find.len);

 }
} while (!fs_wfindnext(&find));

}
}

See also

fs_wfindnext

fs_findnext

Find the next file or subdirectory in a specified directory after a previous call
to fs_findfirst or fs_findnext. First call fs_findfirst function and if file was
found get the rest of the matching files by repeated calls to the fs_findnext
function.

Format

int fs_findnext(FS_FIND *find)

Arguments
 Argument Description
 find find structure (from fs_findfirst)

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file not found

Example
void mydir(void) {

FS_FIND find;
if (!fs_findfirst("A:/subdir/*.*",&find)) {

do {
 printf (“filename:%s”,find.filename);

 if (find.attr&FS_ATTR_DIR) {
 printf (“ directory\n”);
 }
 else {
 printf (“ size %d\n”,find.len);

 }
} while (!fs_findnext(&find));

}
}

See also

fs_findfirst, fs_findfirst

©2003-2005 HCC-Embedded Kft. 54 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 55 www.hcc-embedded.com

fs_wfindnext

Find the next file or subdirectory in a specified directory after a previous call
to fs_wfindfirst or fs_wfindnext. First call fs_wfindfirst function and if file
was found get the rest of the matching files by repeated calls to the
fs_wfindnext function.

Format

int fs_wfindnext(FS_WFIND *find)

Arguments
 Argument Description
 find find structure (from fs_wfindfirst))

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file not found

Example
void mydir(void) {

FS_WFIND find;
if (!fs_wfindfirst("A:/subdir/*.*",&find)) {

do {
 printf (“filename:%s”,find.filename);

 if (find.attr&FS_ATTR_DIR) {
 printf (“ directory\n”);
 }
 else {
 printf (“ size %d\n”,find.len);

 }
} while (!fs_wfindnext(&find));

}
}

See also

fs_wfindfirst, fs_wfindfirst

fs_settimedate

Set time and date on a file or on a directory.

A recommended format for the use of the time date fields is given in the Real
Time Clock section of Section 1.

Note: The time/date data is simply two 16-bit numbers associated with the
specified file which the developer is free to use as desired.

Format

int fs_settimedate(const char *filename,
unsigned short ctime,
unsigned short cdate)

Arguments
 Argument Description
 filename file
 ctime creation time of file or directory
 cdate creation date of file or directory

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found

Example
void myfunc(void) {

unsigned short ctime,cdate;
ctime = (15<<11)+(30<<5)+(23>>1);

/* 15:30:22 */
cdate = ((2002-1980)<<9)+(11<<5)+(3)

/* 2002.11.03. */
fs_mkdir(“subfolder”); /* creating directory */
fs_settimedate(“subfolder”,ctime,cdate);

}

See also
fs_gettimedate

©2003-2005 HCC-Embedded Kft. 56 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 57 www.hcc-embedded.com

fs_wsettimedate

Set time and date on a file or on a directory with Unicode16 name.

A recommended format for the use of the time date fields is given in the Real
Time Clock section of Section 1.

Note: The time/date data is simply two 16-bit numbers associated with the
specified file which the developer is free to use as desired.

Format

int fs_settimedate(const W_CHAR *filename,
unsigned short ctime,
unsigned short cdate)

Arguments
 Argument Description
 filename unicde16 name of file
 ctime creation time of file or directory
 cdate creation date of file or directory

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found

Example
void myfunc(void) {

unsigned short ctime,cdate;
ctime = (15<<11)+(30<<5)+(23>>1);

/* 15:30:22 */
cdate = ((2002-1980)<<9)+(11<<5)+(3)

/* 2002.11.03. */
fs_wmkdir(“subfolder”); /* creating directory */
fs_wsettimedate(“subfolder”,ctime,cdate);

}

See also
fs_wgettimedate

fs_gettimedate

Get time and date information from a file or directory. This field is
automatically set by the system when a file or directory is created and when a
file is closed.

Note: The time/date data is simply two 16-bit numbers associated with the
specified file which the developer is free to use as desired.

Format
int fs_gettimedate(const char *filename,

unsigned short *pctime,
unsigned short *pcdate)

Arguments
 Argument Description
 filename target file or directory
 pctime pointer where to store the time
 pcdate pointer where to store the date

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file or directory name contains invalid characters
 FS_NOTFOUND file or directory not found

©2003-2005 HCC-Embedded Kft. 58 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 59 www.hcc-embedded.com

Example
void myfunc(void) {
 unsigned short t,d;

if (!fs_gettimedate(“subfolder”,&t,&d)) {
 unsigned short sec=(t & 001fH) << 1;
 unsigned short minute=((t & 07e0H) >> 5);
 unsigned short hour=((t & 0f800H) >> 11);
 unsigned short day= (d & 001fH);
 unsigned short month= ((d & 01e0H) >> 5);

 unsigned short year=1980+ ((d & fe00H) >> 9)
 printf (“Time: %d:%d:%d”,hour,minute,sec);
 printf (“Date: %d.%d.%d”,year,month,day);
}
else {
 printf (“File time cannot retrieved!”
}

}

See also
fs_settimedate

fs_wgettimedate

Get time and date information from a file or directory with Unicode16 name.
This field is automatically set by the system when a file or directory is created
and when a file is closed.

Note: The time/date data is simply two 16-bit numbers associated with the
specified file which the developer is free to use as desired.

Format
int fs_wgettimedate(const W_CHAR *filename,

unsigned short *pctime,
unsigned short *pcdate)

Arguments
 Argument Description
 filename unicode16 name of target file or directory
 pctime pointer where to store the time
 pcdate pointer where to store the date

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file or directory name contains invalid characters
 FS_NOTFOUND file or directory not found

©2003-2005 HCC-Embedded Kft. 60 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 61 www.hcc-embedded.com

Example
void myfunc(void) {
 unsigned short t,d;

if (!fs_wgettimedate(“subfolder”,&t,&d)) {
 unsigned short sec=(t & 001fH) << 1;
 unsigned short minute=((t & 07e0H) >> 5);
 unsigned short hour=((t & 0f800H) >> 11);
 unsigned short day= (d & 001fH);
 unsigned short month= ((d & 01e0H) >> 5);

 unsigned short year=1980+ ((d & fe00H) >> 9)
 wprintf (“Time: %d:%d:%d”,hour,minute,sec);
 wprintf (“Date: %d.%d.%d”,year,month,day);
}
else {
 wprintf (“File time cannot retrieved!”
}

}

See also
fs_wsettimedate

fs_setpermission

This sets the file or directory permission field associated with a file.

Every file/directory in the file system has 32-bit field associated with it – this
is known as the permission setting. This field is freely programmable by the
developer and could, for instance, be used to create a user access system.

Format

int fs_setpermission(const char *filename,
unsigned long secure)

Arguments
 Argument Description
 filename target file
 secure 32bit number to associate with filename

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file or directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found

Example
void myfunc(void) {

fs_mkdir(“subfolder”); /* creating directory */
fs_setpermission (“subfolder”,0x00ff0000);

}

See also
fs_getpermission

©2003-2005 HCC-Embedded Kft. 62 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 63 www.hcc-embedded.com

fs_wsetpermission

This sets the file or directory permission field associated with a file with
Unicode16 name.

Every file/directory in the file system has 32-bit field associated with it – this
is known as the permission setting. This field is freely programmable by the
developer and could, for instance, be used to create a user access system.

Format

int fs_wsetpermission(const W_CHAR *filename,
unsigned long secure)

Arguments

 Argument Description
 filename Unicode16 name of target file
 secure 32bit number to associate with filename

Return values

 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file or directory name contains invalid characters
 FS_INVALIDDRIVE drive does not exist
 FS_NOTFOUND file or directory not found

Example
void myfunc(void) {

fs_mkdir(“subfolder”); /* creating directory */
fs_wsetpermission (“subfolder”,0x00ff0000);

}

See also
fs_wgetpermission

fs_getpermission

Retrieves file or directory permission field associated with a file.

Every file/directory in the file system has a 32-bit field associated with it -
this is known as the permission setting. This field is freely programmable by
the developer and could, for instance, be used to create a user access system.

Format

int fs_getpermission(const char *filename,
unsigned long *psecure)

Arguments
 Argument Description
 filename target file
 psecure pointer to where to store permission

Return values
 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file or directory contains invalid characters
 FS_NOTFOUND file or directory not found

Example
void myfunc(void) {
 unsigned long secure;

if (!fs_getpermission (“subfolder”,&secure)) {
 printf (“permission is: %d”,secure);
}
else {
 printf (“Permission cannot be retrieved!”);
}

}

See also
fs_setpermission

©2003-2005 HCC-Embedded Kft. 64 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 65 www.hcc-embedded.com

fs_wgetpermission

Retrieves file or directory permission field associated with a file with
Unicode16 name.

Every file/directory in the file system has a 32-bit field associated with it -
this is known as the permission setting. This field is freely programmable by
the developer and could, for instance, be used to create a user access system.

Format

int fs_getpermission(const W_CHAR *filename,
unsigned long *psecure)

Arguments

 Argument Description
 filename unicode16 name of target file
 psecure pointer to where to store permission

Return values

 Return value Description
 FS_NOERR success
 FS_INVALIDNAME file or directory contains invalid characters
 FS_NOTFOUND file or directory not found

Example
void myfunc(void) {
 unsigned long secure;

if (!fs_wgetpermission (“subfolder”,&secure)) {
 wprintf (“permission is: %d”,secure);
}
else {
 wprintf (“Permission cannot be retrieved!”);
}

}

See also
fs_wsetpermission

fs_open

Open a file. The following open modes are allowed:

“r” open an existing file for reading. The stream is positioned at the

beginning of the file.

“r+” open an existing file for reading and writing. The stream is

positioned at the beginning of the file.

“w” truncate file to zero length or create file for writing. The stream is

positioned at the beginning of the file.

“w+” open for reading and writing. The file is created if it does not exist,

otherwise it is truncated. The stream is positioned at the beginning
of the file.

“a” open for appending (writing at end of file). The file is created if it

does not exist. The stream is positioned at the end of the file.

“a+” open for reading and appending (writing at end of file). The file is

created if it does not exist. The stream is positioned at the end of
the file.

Nb. The system handles all files in binary mode. There is no text mode support.

Format

FS_FILE *fs_open(const char *filename,
const char *mode);

Arguments
 Argument Description
 filename target file
 mode open mode

Return values
 Return value Description
 FS_FILE * pointer to the associated opened file or zero if

could not be opened

©2003-2005 HCC-Embedded Kft. 66 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 67 www.hcc-embedded.com

Example
void myfunc(void) {

FS_FILE *file;
char c;
file=fs_open(“myfile.bin”,”r”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}
fs_read(&c,1,1,file); /* read 1byte */
printf (“’%c’ is read from file”,c);
fs_close(file);

}

See also
fs_read, fs_write, fs_close,

fs_wopen

Open a file with Unicode16 filename. The following open modes are allowed:

“r” open an existing file for reading. The stream is positioned at the

beginning of the file.

“r+” open an existing file for reading and writing. The stream is

positioned at the beginning of the file.

“w” truncate file to zero length or create file for writing. The stream is

positioned at the beginning of the file.

“w+” open for reading and writing. The file is created if it does not exist,

otherwise it is truncated. The stream is positioned at the beginning
of the file.

“a” open for appending (writing at end of file). The file is created if it

does not exist. The stream is positioned at the end of the file.

“a+” open for reading and appending (writing at end of file). The file is

created if it does not exist. The stream is positioned at the end of
the file.

Nb. The system handles all files in binary mode. There is no text mode support.

Format

FS_FILE *fs_wopen(const W_CHAR *filename,
const char *mode);

Arguments
 Argument Description
 filename unicode16 name of target file
 mode open mode

Return values
 Return value Description
 FS_FILE * pointer to the associated opened file or zero if

could not be opened

©2003-2005 HCC-Embedded Kft. 68 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 69 www.hcc-embedded.com

Example
void myfunc(void) {

FS_FILE *file;
char c;
file=fs_wopen(“myfile.bin”,”r”);
if (!file) {
 wprintf (“File cannot be opened!”);
 return;
}
fs_read(&c,1,1,file); /* read 1byte */
wprintf (“’%c’ is read from file”,c);
fs_close(file);

}

See also
fs_read, fs_write, fs_close

fs_truncate

Opens a file for writing and truncates it to the specified length. If the length is
greater than the length of the existing file then the file is padded with zeroes
to the truncated length.

Format

F_FILE *fs_truncate(const char *filename,
unsigned long length);

Arguments
 Argument Description
 filename file to be opened
 length new length of file

Return values
 Return value Description
 F_FILE * pointer to the associated opened file handle or zero

if it could not be opened

Example
int mytruncatefunc(char *filename,

 unsigned long length)
{

F_FILE *file=fs_truncate(filename,length);
if(!file)
 printf(“File not found”);
else
{
 printf(“File %s truncated to %d bytes,

filename, length);
fs_close(file);

}
return 0;

}

See also
fs_open

©2003-2005 HCC-Embedded Kft. 70 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 71 www.hcc-embedded.com

fs_wtruncate

Opens a file for writing and truncates it to the specified length. If the length is
greater than the length of the existing file then the file is padded with zeroes
to the truncated length.

Format

F_FILE *fs_wtruncate(const W_CHAR *filename,
unsigned long length);

Arguments
 Argument Description
 filename file to be opened
 length new length of file

Return values
 Return value Description
 F_FILE * pointer to the associated opened file handle or zero

if it could not be opened

Example
int mywtruncatefunc(W_CHAR *filename,

 unsigned long length)
{

F_FILE *file=fs_wtruncate(filename,length);
if(!file)
 printf(“File not found”);
else
{
 printf(“File %s truncated to %d bytes,

filename, length);
fs_close(file);

}
return 0;

}

See also
fs_wopen

fs_close
Close a previously opened file.

Format

int fs_close(FS_FILE *filehandle)

Arguments
 Argument Description
 filehandle file handle of target

Return values
 Return value Description
 FS_NOERR success
 FS_NOTOPEN file not open
 FS_INVALIDDRIVE file handle points to invalid drive
 FS_DRIVEERROR Cannot be written into device

Example
void myfunc(void) {

FS_FILE *file;
char *string=”ABC”;
file=fs_open(“myfile.bin”,”w”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}
fs_write(string,3,1,file); /* write 3byte */
if (!fs_close(file)) {
 printf (“File stored”);
}
else printf (“file close error”);

}

See also
fs_open, fs_read, fs_write

©2003-2005 HCC-Embedded Kft. 72 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 73 www.hcc-embedded.com

fs_flush
Flush data to the media. This command allows the user to update the file on
the media and therefore update the failsafe state of the file without closing
and opening the file. Once this command has completed this new state of the
file will be restored after a system failure.

Format

int fs_flush(FS_FILE *filehandle)

Arguments

 Argument Description
 filehandle file handle of target

Return values
 Return value Description
 FS_NOERR success
 FS_NOTOPEN file not open
 FS_INVALIDDRIVE file handle points to invalid drive
 FS_DRIVEERROR Cannot be written into device

Example
void myfunc(void) {

FS_FILE *file;
char *string=”ABC”;
file=fs_open(“myfile.bin”,”w”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}
fs_write(string,3,1,file); /* write 3byte */
if (!fs_flush(file)) {
 printf (“New data is now failsafe”);
}
else printf (“file flush error”);

}

See also
fs_open, fs_write, fs_close

fs_write
Write data into file at current position. File has to be opened with "r+", “w”,
“w+”, "a+" or “a”. The file pointer is moved forward by the number of bytes
successfully written.
Note: Data is NOT permanently stored to the media until either and fs_flush
or fs_close has been done on the file.

Format

long fs_write(const void *buf,
long size,long size_st,
FS_FILE *filehandle)

Arguments
 Argument Description
 buf buffer where data is
 size size of items to be written
 size_st number of items to be written
 filehandle file handle to write to

Return values
 Return value Description
 number number of successfully written bytes

Example
void myfunc(void) {

FS_FILE *file;
char *string=”ABC”;
file=fs_open(“myfile.bin”,”w”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}
if (fs_write(string,3,1,file)!=3)
{ /* write 3byte */

printf (“different number of bytes is
written”);

}
fs_close(file);

}

See also
fs_read, fs_open, fs_close, fs_flush

©2003-2005 HCC-Embedded Kft. 74 www.hcc-embedded.com

EFFS - Implementation Guide

©2003-2005 HCC-Embedded Kft. 75 www.hcc-embedded.com

fs_read

Read bytes from the current file position. File has to be opened with “r”, "r+",
"w+" or "a+". The file pointer is moved forward by the number of bytes read.

Format

long fs_read(void *buf,
long size,long size_st,
FS_FILE *filehandle)

Arguments

 Argument Description
 buf buffer where to store data
 size size of items to be read
 size_st number of items to be read
 filehandle file handle to read it

Return values
 Return value Description
 number number of read bytes

Example
int myreadfunc(char *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_open(filename,”r”);
long size=fs_filelength(filename);
if (!file) {
 printf (“%s Cannot be opened!”,filename);
 return 1;
}
if (fs_read(buffer,size,1,file)!=size) {

printf (“different number of bytes are
read”);

}
fs_close(file);
return 0;

}

See also
fs_seek, fs_tell, fs_open, fs_close, fs_write

fs_seek
Move read/write position in the file. Whence parameter could be one of:

FS_SEEK_CUR - Current position of file pointer
FS_SEEK_END - End of file
FS_SEEK_SET - Beginning of file

offset position is relative to whence.

Format
int fs_seek(FS_FILE *filehandle,long offset,

long whence)

Arguments
 Argument Description
 filehandle handle of target file
 offset relative byte position according to whence
 whence where to calculate offset from

Return values
 Return value Description
 FS_NOERR success
 FS_NOTFORREAD file not open for reading
 FS_NOTUSEABLE whence parameter is invalid
 FS_DRIVEERROR drive is not readable
 FS_INVALIDDRIVE invalid drive specified in file handle

Example
int myreadfunc(char *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_open(filename,”r”);
fs_read(buffer,1,1,file); /* read 1 byte */
fs_seek(file,0,SEEK_SET);
fs_read(buffer,1,1,file);/*read the same 1 byte */
fs_seek(file,-1,SEEK_END);
fs_read(buffer,1,1,file); /* read last 1 byte */
fs_close(file);
return 0;

}

See also
fs_read, fs_tell

©2003-2005 HCC-Embedded Kft. 76 www.hcc-embedded.com

File System Functions

fs_tell

Tell the current file position in the target file.

Format

long fs_tell(FS_FILE *filehandle)

Arguments
 Argument Description
 filehandle file handle of target

Return values
 Return value Description
 filepos current read or write file position

Example
int myreadfunc(char *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_open(filename,”r”);
printf (“Current position %d”,fs_tell(file));
fs_read(buffer,1,1,file); /* read 1 byte */
printf (“Current position %d”,fs_tell(file));
fs_read(buffer,1,1,file); /* read 1 byte */
printf (“Current position %d”,fs_tell(file));
fs_close(file);
return 0;

}

See also
fs_seek, fs_read, fs_write, fs_open

©2003-2005 HCC-Embedded Kft. 77 www.hcc-embedded.com

fs_eof

Check whether the current position in the open target file is the end of the
file.

Format

int fs_eof(FS_FILE *filehandle)

Arguments
 Argument Description
 filehandle file handle of target

Return values
 Return value Description
 0 not at end of file
 else end of file or invalid file handle

Example
int myreadfunc(char *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_open(filename,”r”);
while (!fs_eof()) {
 if (!buffsize) break;
 buffsize--;
 fs_read(buffer++,1,1,file);
}
fs_close(file);
return 0;

}

See also
fs_seek, fs_read, fs_write, fs_open

©2003-2005 HCC-Embedded Kft. 78 www.hcc-embedded.com

File System Functions

fs_rewind

Set the current file position in the open target file to the beginning.

Format

int fs_rewind(FS_FILE *filehandle)

Arguments
 Argument Description
 filehandle file handle of target

Return values
 Return value Description
 0 success
 else failed: invalid file handle

Example
void myfunc(void) {
 char buffer[4];
 char buffer2[4];

FS_FILE *file=fs_open("myfile.bin",”r”);
if (file) {

fs_read(buffer,4,1,file);
fs_rewind(file); /* rewind file pointer */
fs_read(buffer2,4,1,file);

/* read from beginning */
fs_close(file);

 }
return 0;

}

See also
fs_seek, fs_read, fs_write, fs_open

©2003-2005 HCC-Embedded Kft. 79 www.hcc-embedded.com

fs_putc

Write a character to the open target file at the current file position. The
current file position is incremented.

Format

int fs_putc(int ch,FS_FILE *filehandle)

Arguments
 Argument Description
 ch character to be written
 filehandle file handle of target

Return values
 Return value Description
 -1 Write Failed
 Value Successfully written character

Example
void myfunc (char *filename, long num) {

FS_FILE *file=fs_open(filename,”w”);
while (num--) {
int ch='A';
 if(ch!=(fs_putc(ch))
 {

printf("fs_putc error!");
break;

 }
}
fs_close(file);
return 0;

}

See also
fs_seek, fs_read, fs_write, fs_open

©2003-2005 HCC-Embedded Kft. 80 www.hcc-embedded.com

File System Functions

fs_getc

Read a character from the current position in the open target file.

Format

int fs_getc(FS_FILE *filehandle)

Arguments
 Argument Description
 filehandle file handle of target

Return values
 Return value Description
 value character which is read from file or -1 if error

Example
int myreadfunc(char *filename, char *buffer, long
buffsize) {

FS_FILE *file=fs_open(filename,”r”);
while (buffsize--) {
int ch;
 if((ch=fs_getc(file))== -1)
 break;
 *buffer++=(char)ch;
 buffsize--;
}

fs_close(file);
return 0;

}

See also
fs_seek, fs_read, fs_write, fs_open, fs_eof

©2003-2005 HCC-Embedded Kft. 81 www.hcc-embedded.com

3 NOR Flash Driver

Physical Device Usage

The developer has to make some decisions about how to use their flash device. To use a
flash device the developer must be aware that all flash devices are divided into a set of
erasable blocks. It is only possible to write to an erased location and it is not possible to
erase anything smaller than a block and thus some complex management software is
used. On some devices the size of these erasable blocks may vary.

Note: The fsmem.exe utility should be used to help you to understand the usage of
the blocks and to make it easier to derive the optimum solution for your
requirements.

The file system operates on a set of logical blocks that may be further divided into
sectors. The physical driver has to do two things in this respect:

1. It defines for the file system which logical block numbers are to be used for what
purpose - this is configured in the FS_FLASH structure and returned to the file system by
the fs_phy_nor_xxx function.

and

2. Provides a mapping between the logical block numbers used by the file system to the
physical addresses of the blocks in the flash device (this is done by the GetBlockAddr
function).

The user has three types of blocks to assign to the device:

• Reserved blocks - for use for processes other than the file system e.g. booting

• Descriptor blocks - to hold information about the structure of the file system, wear
etc. By using a minimum of 2 descriptor blocks (and management software) the
system is failsafe.

• File system blocks - for storing file information.

The sections below describe how to assign these and provide worked examples.

©2003-2005 HCC-Embedded Kft. 82 www.hcc-embedded.com

File System Functions

Reserved blocks

The developer can reserve as many blocks from the physical device as required for
private usage. This is done simply by omitting those blocks from the GetBlockAddr
function.

If the developer wants to access reserved blocks using the GetBlockAddr function then
this may also be done by selecting the physical block numbers to be used and ensuring
they are not used by those specified in the descriptor and file system usage below.

Note: Care should be taken in accessing reserved blocks and attention paid to the
specification of the device used to ensure interoperability. Some devices allow an erase
operation to be performed while another block is being read - others have different rules.
In general it is a sensible approach to use only the file system or the reserved sectors at
any one time. Otherwise careful understanding of the specific device used is required.

©2003-2005 HCC-Embedded Kft. 83 www.hcc-embedded.com

Descriptor Blocks
(see also "Sectors and File Storage" section below)

These blocks contain critical information about the file system, block allocation, wear
information and file/directory information. At least two descriptor blocks must be
included in the system, which can be erased independently. An optional descriptor write
cache may be configured which improves the performance of the file system.

On a flash device with different sized blocks it is generally sensible to use some of the
smaller blocks as descriptor blocks. This also improves the performance of the system.
However, when using the cache this is not so important and it is preferable to allocate a
larger cache.

The following definitions for parameters that must be set up in the NOR physical header
file are listed below:

DESCBLOCKSIZE

This is the size of a descriptor block. All descriptor blocks must be the same size. There
may be only one descriptor in a single physical block. A descriptor must be large enough
to store the specified write cache (see DESCCACHE below) plus all the information
about directory entries and files as well as block and sector information. A calculator
program (/util/fsmem.exe) is provided with the package to help you work out the effect
of setting a particular descriptor size.

Note: where RAM usage is a consideration it is also possible to set the descriptor size to
less than the physical block size - as long as it fits in a single physical block that is used
only for this single purpose.

DESCBLOCKSTART

This is the logical number of the first descriptor block to be used by the file system as a
descriptor block.

DESCBLOCKS

This is the number of descriptor blocks to be used by the file system. There must be at
least two descriptor blocks defined.

DESCCACHE

This defines the descriptor write cache size. This number must be less than
DESCBLOCKSIZE - the cache is allocated in the descriptor block. If set to zero the
descriptor write cache method will not be used. Use of the descriptor write cache is an
efficient method of updating the changes in the descriptor such that the whole descriptor

©2003-2005 HCC-Embedded Kft. 84 www.hcc-embedded.com

File System Functions

need not be re-written - while still retaining the 100% power-fail safe characteristics of
the system.

Use of the descriptor write cache thus substantially reduces wear-leveling and the number
of erases required when updating the system to an absolute minimum.

It is highly recommended to use the descriptor write cache. The larger the size of the
cache the better the performance and wear characteristics of the system. However, a
larger cache size also reduces the number of directory entries - use the fsmem.exe utility
to check the effect of this.

©2003-2005 HCC-Embedded Kft. 85 www.hcc-embedded.com

File System Blocks

The developer should allocate as many of these as required for their file storage.

The parameters that must be set up in the fs_phy_nor_xxx function are listed below:

MAXBLOCKS

This defines the number of erasable blocks available for file storage

BLOCKSTART

This defines the logical number of the first of these blocks that may be used for file
storage. This is the logical number used when the GetBlockAddr function is called.

BLOCKSIZE

This defines the size of the blocks to be used in the file storage area. This must be an
erasable unit of the flash chip. All blocks in the file storage area must be the same size.
This maybe different from the DESCSIZE (see above) where the flash chip has different
size erasable units available.

SECTORSIZE

This defines the sector size. Each block is divided into a number of sectors. This number
is the smallest usable unit in the system and thus represents the minimum file storage
area. For best usage of the flash blocks the sector size should always be a power of 2. For
more information see sector section below.

SECTORPERBLOCK

This defines the number of sectors in a block. It must always be true that:

SECTORPERBLOCK = BLOCKSIZE/SECTORSIZE

©2003-2005 HCC-Embedded Kft. 86 www.hcc-embedded.com

File System Functions

Example 1

The target flash device (e.g. AM29LV160B - see 29lv160b.c file for reference) has 35
erasable blocks (1x16K, 2x8K, 1x32K, 31x64K) and the user wants to reserve blocks 0
and 3 for private usage then a possible configuration is:

BLOCKSIZE 64K size of file storage blocks
BLOCKSTART 4 logical first file storage block (4-18 used)
MAXBLOCKS 31 number of blocks for use by file storage

DESCBLOCKSIZE 8K descriptor size
DESCBLOCKSTART 1 logical first descriptor block number
DESCBLOCKS 2 number of descriptor blocks
DESCCACHE 2K set a write cache of 2K

The table below shows how the physical/logical blocks are arranged:

Physical
Block
Number

Physical
Block Size

Logical Block
Number

Usage

0 16k 0 Reserved Block
1 8k 1 Descriptor block
2 8k 2 Descriptor block
3 32k 3 Reserved Block

4…34 64K 4-34 File Storage Blocks

Thus GetBlockAddr algorithm for this could be:

{
 if(block==0) /* free/unused block */
 return(0);
 if(block==1) /* descriptor block */
 return(16K);
 if(block==2) /* descriptor block */
 return(16K+8K);

if(block==3) /* free/unused block */
 return(16K+8K+8K);

 /* file system blocks */

return(16K+8K+8K+32K+(block-BLOCKSTART)*BLOCKSIZE)+
(relsector*SECTORSIZE));

}

©2003-2005 HCC-Embedded Kft. 87 www.hcc-embedded.com

Example 2

Using a flash device with 512*128K erasable blocks (e.g AM29LV2562M - see
29lv2562m.c file for reference). A minimum of two erasable blocks must be used for
descriptors but these blocks are quite large. Therefore it is a good idea to define a large
part of this for a write cache - in this example we will create a 32K cache. Using this
large cache has two advantages in that the number of erases required is reduced and the
wear on the device is reduced.

We then decide to use the remaining 510 physical blocks for file system storage. So a
configuration could look like:

BLOCKSIZE 128K size of file storage blocks
MAXBLOCKS 510 number of blocks for use by file storage
BLOCKSTART 0 logical first file storage block (0- 509used)

DESCBLOCKSIZE 128K descriptor size (4 per physical block)
DESCBLOCKSTART 510 logical first descriptor block number
DESCBLOCKS 2 number of descriptor blocks
DESCCACHE 32K size of write descriptor cache

The table below shows how the physical/logical blocks are arranged:

Physical
Block
Number

Physical
Block Size

Logical Block
Number

Usage

0-509 64k 0-509 File Storage Blocks
510-511 64k 510-511 Descriptors

The code below shows possible modifications to the driver:

Thus GetBlockAddr algorithm for the above could be:

{

return((block*BLOCKSIZE)+(relsector*SECTORSIZE));
}

©2003-2005 HCC-Embedded Kft. 88 www.hcc-embedded.com

File System Functions

Sectors and File Storage

The blocks of the file storage section of the file system are sub-divided into equal sized
sectors. These sectors are the minimum write-able area on the device and are the
minimum area taken up by a file. For file systems with many small files it is
advantageous to keep the sector size small to maximize the number of files that may be
stored to the system. An additional benefit of keeping the sector size small is that if small
files are written many more can be written before a block erase is required.

e.g. if there is 1 sector per block then a block must be erased for every file but if there are
32 sectors per block then 32 small files can be written before it is necessary to erase
another block.

There is, however, a balance to be struck between the maximum number of files and the
number of sectors in the system. Use fsmem.exe!

A descriptor block must contain:

Block descriptors (6 bytes each)
Sector descriptors (2 bytes each)
File descriptors (32 bytes each)

Thus the maximum number of file allowed in the system may be given by the formula

Max Files < ((DescSize-DescCache) - 6*Maxblock - 2*Maxblock*sectorperblock)/32

The developer should find a balance between having many sectors per block and allowing
enough space in the descriptor for the required number of file descriptors.

If a balance cannot be found the developer should consider using larger descriptor blocks
but this comes with a penalty that the erase time of the frequently used descriptor blocks
will increase.

Note: HCC-Embedded provides an executable program (/utils/fsmem.exe) for
calculating the capabilities of a particular file system on based on input configuration
information.

Note: If files with longer names are used the total number of files that can be stored will
be reduced.

©2003-2005 HCC-Embedded Kft. 89 www.hcc-embedded.com

Files

The NOR flash interface to the file system requires two files:

Flashdrv.c - device independent flash control layer
29lvxxx.c - physical chip controller

The flashdrv.c module provides a single clean interface for the physical chip to the
intermediate file system. This module gets information about the configuration of the
underlying flash chip and the interface routines to call from the 29lvxxx.c module and
builds a controller based on that information. This module also does the wear-level
control for the device.

Normally this module does not require modification. If modification is required it is
strongly recommended that the developer contact HCC-Embedded about their
requirements.

The 29lvxxx.c module is dependent on the specific flash device used and its
configuration – i.e. which manufacturer, what size is the chip, is it a 8/16/32 bit interface
and are there several chips in parallel. All of these factors influence the code in this
module.

The fs_phy_nor_29lvxxx function is the key to understanding the interface between the
specific physical driver and the file system. The structure returned by this call contains all
configuration information about block usage required by the upper layers as well as the
set of interface function pointers to be used. The module provides the following interface
functions to the flashdrv.c module through the FS_FLASH structure:

NOR flash functions

• ReadFlash
• EraseFlash
• WriteFlash
• VerifyFlash (optional)
• BlockCopy (only required if static wear used)

The only public function in this module is fs_phy_nor_29lvxxx - which must be passed
to the fs_mountdrive API function to initialize the physical driver.

All these functions are documented below. These functions then require subroutine calls
to fulfill their function. After these function definitions a description of all the routines
used in this module is given. These routines are documented for an AMD 29LV320B
NOR flash chip. For any specific device the implementation may vary. The routines are
documented to give guidance as to how to implement this module.

©2003-2005 HCC-Embedded Kft. 90 www.hcc-embedded.com

File System Functions

Physical Interface Functions

The functions in this section provide the interface to the upper layer and must be ported
to meet the requirements of the particular flash device/s used and the hardware design. A
sample driver for an AMD29Lxx device is supplied for reference purposes.

fs_phy_nor_xxx

This is the first call made by the upper layer to discover the flash device
configuration. This function can be used for initializing flash device, and also
for detecting the flash type. It gives information to the upper layer about the
number of blocks, block sizes, sector size, cache size etc.

Format

int fs_phy_nor_xxx(FS_FLASH *flash)

Arguments

 Argument Description
 flash flash structure which is needed to be filled

Return values
 Return value Description
 0 if flash device successfully checked
 any number if there was any error during initialization

©2003-2005 HCC-Embedded Kft. 91 www.hcc-embedded.com

Comments

This is the FS_FLASH structure that the module configures:

typedef struct {
long maxblock; /*maximum number of block can be used */
long blocksize; /*block size in bytes */
long sectorsize; /*sector size to use */
long sectorperblock; /* sector/block (block size/sector size)*/
long blockstart; /* where physical block start */
long descsize; /* max size of fat+directory+block index */
long descblockstart; /* where to store 1st descriptor block */
long descblockend; /* where to store last descriptor block */
long separatedir; /* not used for NOR */
long cacheddescsize; /* size of descriptor write cache */
long cachedpagenum; /* not used in NOR */
long cachedescpagesize; /* not used in NOR */
FS_PHYREAD ReadFlash; /* read content fn pointer */
FS_PHYERASE EraseFlash; /* erase a block fn pointer */
FS_PHYWRITE WriteFlash; /* write content fn pointer */
FS_PHYVERIFY VerifyFlash; /* verify content fn pointer */
FS_PHYCHECK CheckBadBlock; /* not used for NOR */
FS_PHYSIGN GetBlockSignature; /* not used for NOR */
FS_PHYCACHE WriteVerifyPage; /* not used in NOR */
FS_PHYBLKCPY BlockCopy; /* HW/SW accelerated block copy */

} FS_FLASH;

©2003-2005 HCC-Embedded Kft. 92 www.hcc-embedded.com

File System Functions

ReadFlash

This function is called from higher layer to read data from flash..

Format

int ReadFlash(void *data,
long block,
long blockrel,
long datalen)

Arguments
 Argument Description
 data pointer where to store data
 block zero based block number to be read
 blockrel relative position in block where to start reading
 datalen length of data to be read

Return values
 Return value Description
 0 success
 else error during read

Comments:

Blockrel is a number, which says the reading start position in block, could be a
number from 0 to block size.

Datalength is always less than block size and never points out from a given block,
even if blockrel points into the middle of the block

©2003-2005 HCC-Embedded Kft. 93 www.hcc-embedded.com

EraseFlash

Erase a block in flash.

Format

int EraseFlash(long block)

Arguments
 Argument Description
 block zero based block number to be erased

Return values
 Return value Description
 0 successfully erased
 any number error during erasing

©2003-2005 HCC-Embedded Kft. 94 www.hcc-embedded.com

File System Functions

WriteFlash

Write data into the flash device.

Format

int WriteFlash(void *data,
long block,
long relsector,
long size,
long relpos)

Arguments
 Argument Description
 data points source data to be written
 block zero based block number where to store data
 sector zero based relative sector number in block
 size length of data need to store
 relpos relative position in block to write data

Return values
 Return value Description
 0 successfully written
 any number if there was any error during writing

©2003-2005 HCC-Embedded Kft. 95 www.hcc-embedded.com

VerifyFlash

This function is called from higher level after WriteFlash to verify written
data. The incoming parameters are the same as for WriteFlash. This function
is for comparing written data with the original.

Format

int VerifyFlash(void *data,
long block,
long relsector,
long size,
long relpos)

Arguments
 Argument Description
 data points source data to be compared
 block zero based block number where to compare data
 relsector zero based relative sector number in block
 size length of data need to compare
 relpos relative position in block of data to verify

Return values
 Return value Description
 0 successfully verified
 any number if there was any error during verifying

Comment:

The verify function is not always necessary – this depends on the
particular flash chip in use and what is specified in the datasheet to
guarantee that a program operation has completed successfully.

©2003-2005 HCC-Embedded Kft. 96 www.hcc-embedded.com

File System Functions

BlockCopy

This function copies one block to another block. This function is only called
if static wear is being used. This routine should be implemented to use any
features of the target device which may be used to accelerate a block to block
copy operation. Many devices have features to support this which helps
reduce CPU load and improve system performance. See Static Wear section
for further details.

Format

int BlockCopy(long destblock, long soublock)

Arguments
 Argument Description
 destblock block number to copy to
 soublock block number to copy from

Return values
 Return value Description
 0 success
 else failed

©2003-2005 HCC-Embedded Kft. 97 www.hcc-embedded.com

Subroutine Descriptions and Notes for Sample Driver

This section contains a complete list of subroutines, describes their functionality and
includes notes for porting these routines to a particular hardware design.

FS_FLASHBASE

This define specifies the base address for accessing the flash memory array. The value of
this can only be determined from the hardware design. The sample code is based on an
ARM implementation and reads the value from the Flash chip select.

RemoveWriteProtect

Remove hardware supported write protect from flash’s Chip Select. The developer may
implement their own function here to remove write protection based on their hardware
design. If write protection is not required this function may be left empty.

SetWriteProtect

Set hardware supported write protection to flash’s Chip Select (prevention for further
writing). The developer may implement their own function here to set write protection
based on their hardware design. If write protection is not required this function may be
left empty.

GetBlockAddr(block: long, relsector: long)

Calculate physical address of relative sector in specified block. When a descriptor block
is specified the sector field should be ignored and the base address of the block returned.

This routine must be modified by the developer to return the correct block/sector
addresses for the requested logical blocks as has been set up in the fs_phy_nor_vxxx
routine.

WriteCmd(cmd: ushort)

Write command sequence to flash device (0x555, 0xaa; 0x2aa, 0x55; 0x555, cmd).
This command must be modified to that of the specific type of flash device being used.
The sample program is that for an AM29xxxx series flash device.

©2003-2005 HCC-Embedded Kft. 98 www.hcc-embedded.com

File System Functions

DataPoll(addr: long, chk ushort)

This is an AMD specific sub-routine for checking that data has been written correctly.
The algorithm is:

 for
 if timeout reached return 2 /* Timeout error */
 readdata from flash addr
 if (data == chk) return 0 /* Ok */
 if (no poll needed) check data and return ok or data error
 end for

EraseFlash(block: long)

This routine is used by the higher level software to erase a logical block of flash memory.

The basic algorithm is:

addr = GetBlockAddr(block, 0)
 RemoveWriteProtect()
 Send Erase Command and addr of which block need to be erased
 SetWriteProtect()
 return DataPoll(addr) /* wait until erase is finished and return with result */

The commands must be modified to that of the specific type of flash device being used.
The sample program is that for an AM29xxxx series flash device.

WriteFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)

This routine is called by the higher levels to write some data to the flash device. Note:
The sdata parameter is not used.

Algorithm:
 Destaddr = GetBlockAddr(block, relsector)
 Do 16bit data length align
 RemoveWriteProtect()
 for

 Send Write Command to flash device and program 16bit
 If (DataPoll(addr,data)) return error

/* wait program end, if error returns */
 If length is reached then end of programming

 end for
 exit program mode by sending exit command to flash device
 SetWriteProtect()
 Return ok

©2003-2005 HCC-Embedded Kft. 99 www.hcc-embedded.com

The commands must be modified to that of the specific type of flash device being used.
The sample program is that for an AM29xxxx series flash device.

VerifyFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)

This routine is called by the higher levels after a write operation has been completed to
ensure that the data has been written correctly. Note: the sdata parameter is not used.

Algorithm:
 Addr = GetBlockAddr(block, relsector) + Flash base
 Do 16bit data length align
 Verify programmed data with original data, if error then returns with error
 If all data is checked returns with no error

The commands must be modified to that of the specific type of flash device being used.
The sample program is that for an AM29xxxx series flash device.

ReadFlash(data: ptr, block: long, blockrel: long, datalen: long)

This routine reads the specified amount of data from the flash device.

Algorithm:
 Addr = GetBlockAddr(block, 0) + Flash base
 Calculating start position from blockrel
 Copy all data onto data address from flash device

The commands must be modified to that of the specific type of flash device being used.
The sample program is that for an AM29xxxx series flash device.

fs_phy_nor_29lvxxx (flash: struct)

 Initialises internal functions to the flash structure
 RemoveWriteProtect()
 Getting device ID and manufacture ID from the flash
 SetWriteProtect()

Compare all supported device/manufacture and fills flash structure with
corresponding data (size, sectors, block information)
If device not found returns with error

FnWriteWord (base: ptr, addr: long, data: ushort)

Add to base pointer the flash relative address, and write 16bits data into flash. This
function is in the 29lxxxx.s file and is written for an ARM based system with 16bit access
to the flash. This and calls to it must be modified according to the hardware design.

©2003-2005 HCC-Embedded Kft. 100 www.hcc-embedded.com

File System Functions

4 NAND Flash Driver

Overview

The NAND flash interface to the file system requires two files:

nflashdrv.c - device independent flash control layer
K9F2816X0C.c - physical chip controller

The nflashdrv.c module provides a single clean interface for the physical chip to the
intermediate file system. This module gets information about the configuration of the
underlying flash chip from the K9F2816X0C.c module and builds a controller based on
that information. This module also does the wear-level control for the device.

Normally this module does not require modification. If modification is required it is
strongly recommended that the developer contact HCC-Embedded about their
requirements.

The K9F2816X0C.c module is dependent on the specific flash device used and its
configuration – i.e. which manufacturer, what size is the chip, is the data interface 8 or 16
bit and are there several chips in parallel or serial. All of these factors influence the code
in this module.

The fs_phy_nand_k9f2816x0cxxx function is the key to understanding the interface
between the specific physical driver and the file system. The structure returned by this
call contains all configuration information about block usage required by the upper layers
as well as the set of interface function pointers to be used. The module provides the
following interface functions to the nflshdrv.c module through the FS_FLASH structure:

NAND flash functions

• ReadFlash
• EraseFlash
• WriteFlash
• VerifyFlash (optional)
• GetBlockSignature
• CheckBadBlock
• WriteVerifyPage
• BlockCopy (only if static wear is used)

The only public function in this module is fs_phy_nand_K9F2816X0C - which must be
passed to fs_mountdrive to initialize the physical driver.

These functions are fully documented below.

©2003-2005 HCC-Embedded Kft. 101 www.hcc-embedded.com

These functions then require subroutine calls to fulfill their function. After these function
definitions a description of all the routines used in this module is given. These routines
are documented for 2 * K9F2816X0C Samsung chips in a parallel configuration. For any
specific device the implementation may vary. The routines are documented to give
guidance as to how to implement this module.

Physical Device Usage

The developer has to make some decisions about how to use their flash device. To use a
flash device the developer must be aware that all devices are divided into a set of erasable
blocks. It is only possible to write to an erased area and it is not possible to erase anything
smaller than a block and thus some complex management software is used.

The user has three types of blocks to assign to the device:

• Reserved blocks - for use for processes other than the file system

• Descriptor blocks - to hold information about the structure of the file system, wear
etc. By using descriptor blocks (and management software) the system is failsafe.

• File system blocks - for storing file information.

The sections below describe how to assign these.

Reserved blocks

The developer can reserve as many blocks from the physical device as required for
private usage. This is done simply by omitting those blocks from the GetBlockAddr
function.

If the developer wants to access reserved blocks using the GetBlockAddr function then
this may also be done by selecting the physical block numbers to be used and ensuring
they are not used by those specified in the descriptor and file system usage below.

e.g. If a particular physical device has 1024 erasable blocks and the user wants to reserve
256 blocks from the beginning for private usage they might set:

maxblock = 768 - number of blocks for use by the file system
blockstart = 256 - first file storage block

Thus if the user requests GetBloackAddr for blocks 0-255 they will get the address of a
block in the physical device not used by the file system.

©2003-2005 HCC-Embedded Kft. 102 www.hcc-embedded.com

File System Functions

Note: The developer should take care accessing reserved blocks while the file system is
accessing the device. Operations must be done atomically i.e. a command must be
completed on the device before another is started.

Descriptor Blocks

These blocks contain critical information about the file system, block allocation, wear
information and file/directory information. They are allocated automatically from the file
system blocks.

The parameters that must be set up in the fs_phy_nand_xxx function are listed below:

descblocksize

This is the size of a descriptor block. Since all blocks are the same size on NAND flash
devices it is the same as the block size.

seperatedir

Range 0 to 4. If this is set to a non-zero value the directory entries will be given separate
blocks from the file system. The number specified in separatedir is the maximum number
of separate blocks that will be allocated for directory entries. This allows a much larger
number of files to be stored in the file system.

File System Blocks

The developer should allocate as many of these as required for their file storage.

The parameters that must be set up in the fs_phy_nand_xxx function are listed below:

maxblock

This defines the number of erasable blocks available for file storage

blockstart

This defines the logical number of the first of these blocks that may be used by the file
system. This is the logical number used when the GetBlockAddr function is called.

blocksize

This defines the size of the blocks to be used in the file storage area. This must be an
erasable unit of the flash chip. All blocks in the file storage area must be the same size.

©2003-2005 HCC-Embedded Kft. 103 www.hcc-embedded.com

sectorsize

This defines the sector size. Each block is divided (by 2^n) into a number of sectors. This
number is the smallest usable unit in the system and thus represents the minimum file
storage area.

sectorperblock

This defines the number of sectors in a block. It must always be true that:

sectorperblock * sectorsize = blocksize

Write Cache

The system allows a write cache to be defined for the driver. This works such that in most
cases only changes to the descriptor block are stored to the flash device thus improving
the performance of the system (fewer erases and writes) and reducing wear on the system.

To use the write cache the WriteVerifyPage function must be present. If this function
does not exist then write caching will not be done.

Additionally the following parameters in the FS_FLASH structure must be set-up in the
fs_phy_nand_xxx function:

cachedpagesize - should be equal to the page size of the device

cachedpagenum - number of pages in the cache which must equal the number of

pages in an erasable block.

If either of these is set to zero write caching will not be used.

Maximum Files

The maximum number of file/directory entries that can be made on a file system is
restricted.

The maximum number of directory and file entries available on the system can be
calculated from the formula:

MaxNum Entries = (Descsize - (maxblock*((sectorperblock*2) + 6)))/32

If more files are required (without using the separatedir setting) then either the sector
size can be increased (creating more space in the descriptor blocks or a larger descriptor

©2003-2005 HCC-Embedded Kft. 104 www.hcc-embedded.com

File System Functions

block may be chosen. If fewer files are required then the sector size can be decreased or
smaller descriptor blocks may be allocated.

If separatedir is used then the maximum number of file and directory entries is given by
the formula:

MaxNum Entries = (Blocksize/32)*separatedir

Note: If files with long filenames are used the number of files that can be stored will be
reduced.

©2003-2005 HCC-Embedded Kft. 105 www.hcc-embedded.com

Physical Layer Functions

fs_phy_nand_xxx

This is the first driver function called by the upper layer to retrieve
information about the underlying physical driver. This function can be used
for initializing flash device and detecting the flash type. The function must
prepare the FS_FLASH structure with information for higher-level about how
to use this driver.

Format

int fs_phy_nand_xxx(FS_FLASH *flash)

Arguments

 Argument Description
 flash pointer to flash structure which must be filled

Return values

 Return value Description
 0 success
 else error during initialization

©2003-2005 HCC-Embedded Kft. 106 www.hcc-embedded.com

File System Functions

Comments

This is the FS_FLASH structure that the module must set up:

typedef struct {
long maxblock; /* max num of block that can be used */
 /* by the file system */
long blocksize; /*block size in bytes
long sectorsize; /*sector size to use
long sectorperblock; /* sectors/block */
long blockstart; /* the first physical block */
long descsize; /*block size in bytes */
long descblock1; /*not used for NAND */
long descblock2; /* not used for NAND */
long separatedir; /* directories use separate */
 /* block from FAT? */
long cacheddescsize; /*not used for NAND */
long cachedpagenum; /*number of pages in cache */
long cachedpagesize; /*size of pages in cache */
FS_PHYREAD ReadFlash; /*read content fn ptr */
FS_PHYERASE EraseFlash; /*erase a block fn ptr */
FS_PHYWRITE WriteFlash; /*write content fn ptr */
FS_PHYVERIFY VerifyFlash; /*verify content fn ptr */
FS_PHYCHECK CheckBadBlock; /* check if block is bad fn ptr */
FS_PHYSIGN GetBlockSignature;
 /* get block signature data fn ptr */
FS_PHYCACHE WriteVerifypage; /* write and verify page */
FS_PHYBLKCPY BlockCopy; /* HW/SW accelerated block copy */
} FS_FLASH;

©2003-2005 HCC-Embedded Kft. 107 www.hcc-embedded.com

ReadFlash

This function is called to read data from the flash device.

Format

int ReadFlash(void *data,
long block,
long blockrel,
long datalen)

Arguments

 Argument Description
 data pointer where to store data
 block zero based block number to be read
 blockrel relative position in block where to start reading
 datalen length of data to be read

Return values
 Return value Description
 0 success
 any number if there was any error during reading

Comments:

Blockrel is a number, which says the reading start position in block, could be a
number from 0 to block size.

Datalength is always less than block size and never points out from a given block,
even if blockrel points into the middle of the block

©2003-2005 HCC-Embedded Kft. 108 www.hcc-embedded.com

File System Functions

EraseFlash

Erase a block in flash.

Format

int EraseFlash(long block)

Arguments
 Argument Description
 block zero based block number to be erased

Return values

 Return value Description
 0 if successfully erased
 any number if there was any error during erasing

©2003-2005 HCC-Embedded Kft. 109 www.hcc-embedded.com

WriteFlash

Write data into the flash device.

Format

int WriteFlash(void *data,
long block,
long relsector,
long size,
long sdata)

Arguments

 Argument Description
 data points source data to be written
 block zero based block number where to store data
 relsector zero based relative sector in block
 size length of data to be stored
 sdata block signature data

Return values
 Return value Description
 0 if successfully written
 any number if there was any error during writing

©2003-2005 HCC-Embedded Kft. 110 www.hcc-embedded.com

File System Functions

VerifyFlash

This function verifies a data range in the flash matches a data buffer. This
function is called after WriteFlash to verify written data with the original
data.

Format

int VerifyFlash(void *data,
long block,
long relsector,
long size,
long sdata)

Arguments
 Argument Description
 data points source data to be compared
 block zero based block number where to compare data
 relsector zero based relative sector in block
 size length of data need to compare
 sdata block signature data

Return values
 Return value Description
 0 if successfully verified and no different in device
 any number if there was any error during verifying

Comment

The verify routine is only required where this is the desired method of ensuring that the
device has been correctly written. To decide whether to use a verify routine or not the
device datasheet should be read. If, for example, ECC is being used and the reliability
being guaranteed by this is sufficient for your requirements then the verify routine may
be omitted. This has a significant performance benefit.

©2003-2005 HCC-Embedded Kft. 111 www.hcc-embedded.com

CheckBadBlock
This function is called at file system initialization to determine which blocks
are bad blocks. The flash device may contain invalid blocks and in this
function is called to sign them in for file system not to use. Higher level will
call this function for all used block. The method how to check a block if it is
bad is device dependent.

Format

int CheckBadBlock(long block)

Arguments
 Argument Description
 block number of block to be checked

Return values
 Return value Description
 0 block is useable
 1 block is BAD or INVALID

©2003-2005 HCC-Embedded Kft. 112 www.hcc-embedded.com

File System Functions

GetBlockSignature
This function is called from higher level to get the previously stored block
signature data set by WriteFlash().

Format

long GetBlockSignature(long block)

Arguments
 Argument Description
 block number of target block

Return values

 Return value Description
 value signature data

©2003-2005 HCC-Embedded Kft. 113 www.hcc-embedded.com

WriteVerifyPage

This function verifies that a page of data within the flash matches a buffer
containing the written data. This function is called after the write caching
mechanism writes a page of data to the flash.

Format

int WriteVerifyPage(void *data, long block,
long page, long pagenum, long sdata)

Arguments
 Argument Description
 data pointer to data to be written and verified
 block which block need to be checked
 page start page number in block
 pagenum number of pages to be written
 sdata signature data for block

Return values
 Return value Description
 0 success
 else failed

Comment

The verify routine is only required where this is the desired method of ensuring that the
device has been correctly written. To decide whether to use a verify routine or not the
device datasheet should be read. If, for example, ECC is being used and the reliability
being guaranteed by this is sufficient for your requirements then the verify routine may
be omitted. This has a significant performance benefit.

©2003-2005 HCC-Embedded Kft. 114 www.hcc-embedded.com

File System Functions

BlockCopy

This function copies one block to another block. This function is only called
if static wear is being used. This routine should be implemented to use any
features of the target device which may be used to accelerate a block to block
copy operation. Many devices have features to support this which helps
reduce CPU load and improve system performance. See Static Wear section
for further details.

Format

int BlockCopy(long destblock, long soublock)

Arguments

 Argument Description
 destblock block number to copy to
 soublock block number to copy from

Return values

 Return value Description
 0 success
 else failed

©2003-2005 HCC-Embedded Kft. 115 www.hcc-embedded.com

Subroutine Descriptions and Notes for Sample Driver

This section contains a complete list of subroutines, describes their functionality and
includes notes for porting these routines to a particular hardware design.

NANDcmd(cmd: long)
 Send a command to NAND flash

NANDaddr(addr: long)
 Send an address to NAND flash

NANDwaitrb()
 Wait until RB (ready/busy) goes hi on NAND flash

ReadPage(pagenum: long)
 Send command sequence to read a page
 Read whole page data and calculate ECC
 Get saved ECC from NAND flash spare area
 If ECC calculation is needed do ECC checking

WritePage(data: ptr, pagenum: long, size: long)
 Copy original data into a temporally buffer (this buffer is 32bit aligned)
 Send Command sequence to NAND flash for programming a page
 Program a whole page and calculate ECC
 Write ECC into NAND flash spare area
 Check if programming was successfully, if not return with error

ReadFlash(data: ptr, block: long, blockrel: long, datalen: long)
 Calculate pagenum
 Find starting page from blockrel
 ReadPage(pagenum)
 Check if data need to copy and copy
 ReadPage(pagenum) until datalength=0

EraseFlash(block: long)

Calculate pagenum
 Send Command sequence to NAND flash erase block
 Wait until erasing is finished
 Check if erase was successful, if not return with error

WriteFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)

Calculate pagenum
 WritePage(pagenum++) until size=0 or any error
 Signal error or return with successfully written

©2003-2005 HCC-Embedded Kft. 116 www.hcc-embedded.com

File System Functions

VerifyFlash(data: ptr, block: long, relsector: long, len: long, sdata: long)
 Calculate pagenum
 ReadPage(pagenum++) until len=0
 Compare pages with original data, if any differences return with error

CheckBadBlock(block: long)
 Determine if given block is bad or not
 Calculate pagenum
 Send read spare area command to NAND flash
 Check 6th word if its not 0xffffffff return with error, other case return 0 (ok)

GetBlockSignature(block: long)
 Read signature data from block

fs_phy_nand_K9F2816X0C (flash: struct)
 Set function pointers for driver.

Getting device ID and manufacture ID from NAND flash
Compare all supported device/manufacture and fills flash structure with
corresponding data (size, sectors, block information)
If device not found returns with error

©2003-2005 HCC-Embedded Kft. 117 www.hcc-embedded.com

5 RAM Driver

Implementing a RAM drive for the file system is simple. There is no physical driver
associated with the RAM drive.

1. Include the ramdrv_s.c and ramdrv_s.h files in your file system build. This ensures it
can be mounted.

2. After fs_init has been called, call the function fs_mountdrive with a pointer to the
memory area you wish to use for the drive and the size of that area. e.g.

#define RAM_DRIVE_SIZE 0x1000000

void main(void){

 fs_init(); /* initialize the file system */

 /* mount first drive – A */

 fs_mountdrive(
 0, /* specifies drive 'A' */

malloc (RAM_DRIVE_SIZE),/* get required buffer pointer */
RAM_DRIVE_SIZE, /* size of RAM drive to be used */
fs_mount_ramdrive,/*ramdrive mount function (in ramdrv.c) */
0 /* no physical */

);
}

The RAM drive may now be used as a standard drive.

©2003-2005 HCC-Embedded Kft. 118 www.hcc-embedded.com

File System Functions

6 File System Test

Supplied with the system is test code for exercising the system and ensuring that the file
system is working correctly. Most functionality of the file system is exercised with this
program including file read/write/append/seek/file content, directories and file
manipulation functions. To use the test program include test.c and test.h in your test
project.

void fs_dotest(void) is called to execute the test code.

The test program requires the following three functions to be implemented by the
developer - they are host system dependent - sample code below demonstrates the
required functionality:

/* int _fs_poweron(void) */
/* the developer should provide this function which should call */
/* f_initvolume for the drive to be tested - which must be drive 0 */
/* ("A"). If the RAM drive is being tested then the volume must be */
/* initialized and then formatted (f_initvolume then f_format). */
/* _f_poweron is called by the test code during the test operation. */
/* This routine should return non-zero if any error is detected. */

int _fs_poweron(void)
{
 /* A sample of this function is included in /serc/test/main.c */
}

/* _fs_dump() displays text from the running tests */

void _fs_dump (char *s)
{
 printf("%s\n",s);
}

/* _f_result() function to display errors detected during the test */

long _fs_result(long testnum, long error)
{

printf("test number %d failed with error %d/n", testnum, error);
return(testnum)

}

©2003-2005 HCC-Embedded Kft. 119 www.hcc-embedded.com

	0 Contents
	 1 System Overview
	Summary
	 Target Audience
	 System Structure/Source Code
	 System Source File List
	
	 What is NOR and NAND Flash?
	
	NOR Flash
	
	 NAND/AND Flash
	
	 NOR/NAND Summary

	 Reentrancy
	Mutex Functions
	 Maximum Tasks and CWD
	Implementing Drivers
	System Requirements
	Timeouts
	 Real Time Clock
	Memory Allocation
	
	Stack Requirements
	Memcpy and Memset

	 System Features
	
	Power Fail Safety
	Long Filenames
	
	
	Multiple Volumes
	Multiple Open Files in a Volume
	Static Wear

	 Getting Started
	 2 File API
	File System Functions
	fs_getversion
	 fs_init
	
	fs_mountdrive
	
	fs_format
	fs_getfreespace
	 fs_staticwear
	
	fs_mkdir
	 fs_wmkdir
	
	fs_chdir
	 fs_wchdir
	
	fs_rmdir
	 fs_wrmdir
	fs_getdrive
	fs_chdrive
	fs_getcwd
	 fs_wgetcwd
	fs_getdcwd
	 fs_wgetdcwd
	
	fs_rename
	 fs_wrename
	 fs_move
	 fs_wmove
	
	fs_delete
	 fs_wdelete
	
	fs_filelength
	 fs_wfilelength
	
	fs_findfirst
	fs_wfindfirst
	
	fs_findnext
	 fs_wfindnext
	
	fs_settimedate
	 fs_wsettimedate
	fs_gettimedate
	 fs_wgettimedate
	fs_setpermission
	 fs_wsetpermission
	fs_getpermission
	 fs_wgetpermission
	fs_open
	
	 fs_wopen
	 fs_truncate
	 fs_wtruncate
	fs_close
	 fs_flush
	fs_write
	
	fs_read
	
	fs_seek
	
	fs_tell
	 fs_eof
	 fs_rewind
	 fs_putc
	 fs_getc

	 3 NOR Flash Driver
	Physical Device Usage
	Reserved blocks
	
	 Descriptor Blocks
	File System Blocks
	 Example 1
	 Example 2

	 Sectors and File Storage
	Max Files < ((DescSize-DescCache) - 6*Maxblock - 2*Maxblock*sectorperblock)/32

	 Files
	 Physical Interface Functions
	
	fs_phy_nor_xxx
	 ReadFlash

	
	EraseFlash

	
	WriteFlash

	
	VerifyFlash
	 BlockCopy

	
	Subroutine Descriptions and Notes for Sample Driver

	4 NAND Flash Driver
	Overview
	Physical Device Usage
	Reserved blocks
	
	Descriptor Blocks
	
	File System Blocks

	Write Cache
	Maximum Files
	 Physical Layer Functions
	fs_phy_nand_xxx
	 ReadFlash
	EraseFlash
	
	WriteFlash
	
	VerifyFlash
	 CheckBadBlock
	
	 GetBlockSignature
	 WriteVerifyPage
	 BlockCopy
	 Subroutine Descriptions and Notes for Sample Driver

	 5 RAM Driver
	 6 File System Test

