
Complexity of switch() construct in gcc

Ivan Voras <ivoras@gmail.com>

1. Introduction
The  switch construct  in  C  has  the  mixed  blessing  of  being  much  used  and  abused 
throughout the history of the language. The most famous of abuses is certainly the “Duff s'  
device” which manages to interleave  switch..case construct with a  for construct to 
achieve loop unrolling.

One  interesting  property  of  this  construct  is  that  sometimes  it s  possible  to'  
implement  it  in  machine  code  with  O(1)  complexity  (with  respect  to  the  number  of 
separate cases in the  switch..case construct). This is possible mostly because of the 
main limitation of the construct – that it only works for integer and related type variables.

1.1. The environment

All code presented in this document is written and compiled on gcc 3.4.4 on FreeBSD 
on i386. Unless otherwise noted, code is generated with -march=pentium3.

1.2. Basic code snippet

Code examined in this document is generally similar to this one:

enum t_bla { bla0, bla1, bla2, bla3, bla4 };

int main(int argc) {
    char bla = argc-1;

    switch (bla) {
        case bla0:
            printf("0\n");
            break;

1



        case bla1:
            printf("1\n");
            break;
        case bla2:
            printf("2\n");
            break;
        case bla3:
            printf("3\n");
            break;
        case bla4:
            printf("4\n");
            break;
        default:
            printf("default\n");
    }
            
    return 0;
}

The enum line is here in an attempt to fool the compiler, as is the first line in main(). The 
rest is a straightforward switch..case construct.

2. Threshold of optimisation
It turns out that the O(1) optimisation isn t done mindlessly, but with a threshold. If the'  
code  contains  up  to  and  including  three  case  parts  (excluding  the  default  part),  the 
generated code will be more or less straightforward:

main:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $8, %esp
        movzbl  8(%ebp), %eax
        andl    $-16, %esp
        subl    $16, %esp
        decb    %al
        movsbl  %al,%eax
        cmpl    $1, %eax
        je      .L4
        jle     .L10
        cmpl    $2, %eax
        je      .L11
.L6:
        movl    $.LC3, (%esp)
.L8:
        call    puts
        leave
        xorl    %eax, %eax

2



        ret
        .p2align 4,,7
.L10:
        testl   %eax, %eax
        jne     .L6
        movl    $.LC0, (%esp)
        jmp     .L8
        .p2align 4,,7
.L4:
        movl    $.LC1, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret
        .p2align 4,,7
.L11:
        movl    $.LC2, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret

This assembler snippet is generated with -O3 optimisation switch. Code corresponding to 
the  switch..case construct  is  emphasized in bold  letters  in  the  above  snippet.  The 
switch..case construct from which the above code is generated has four parts, case 0, 
case 1, case 2, and the default case.  Here are some observations about the generated 
code:

• Code is out of order. Compiler took the middle value as a anchor-case and did sort 
of binary partition on it.

• The comparison is always done with full 32-bit registers (the i386 architecture can 
also access lower 8 or 16 bits of general-purpose registers)

• The compiler obviously took advantage of the fact that there s only a limited (and'  
well-known) set of possible values in the code

• There are  two compare instructions  generated,  and due to  other  optimisations 
performed, the function ended up with three exit points (return instructions).

This is pretty smart code generation. There is out of order semantics, some fall-through 
optimisations and all calls to  printf() were replaced with  puts() because the printed 
strings didn t contain formatting specifiers. Also interesting to note is that generated code'  
for  the  switch..case construct  is  really  short,  compared  to  the  book-keeping  code 
preceding it.

The generated code remains the same even if the case X values are out of order 
and/or non-sequential. Because all values are unique integers there s always the implicit'  
ordering of numbers that is taken advantage of.

3



3. The O(1) case
With  four  or  more  case parts  in  the  construct,  and  regardless  of  the  compiler s'  
optimisation switch (-Ox) a different algorithm is used, one which generates a jump table 
of addresses and uses the argument in switch() as the index into this table. The original 
C code presented at the start of this document generates this code (again, this is with -O3 
optimisation):

main:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $8, %esp
        movzbl  8(%ebp), %eax
        andl    $-16, %esp
        subl    $16, %esp
        decb    %al
        movsbl  %al,%eax
        cmpl    $4, %eax
        ja      .L8
        jmp     *.L9(,%eax,4)
        .section        .rodata
        .p2align 2
        .p2align 2
.L9:
        .long   .L3
        .long   .L4
        .long   .L5
        .long   .L6
        .long   .L7
        .text
        .p2align 4,,7
.L8:
        movl    $.LC5, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret
        .p2align 4,,7
.L7:
        movl    $.LC4, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret
        .p2align 4,,7
.L3:
        movl    $.LC0, (%esp)

4



        call    puts
        leave
        xorl    %eax, %eax
        ret
        .p2align 4,,7
.L4:
        movl    $.LC1, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret
        .p2align 4,,7
.L5:
        movl    $.LC2, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret
        .p2align 4,,7
.L6:
        movl    $.LC3, (%esp)
        call    puts
        leave
        xorl    %eax, %eax
        ret

Again, the code corresponding to switch..case construct has been highlighted by bold using 
letters. After the check for the default value (cmpl $4, %eax; ja .L8) the compiler has 
embedded a small data section into the code. Some observations:

• The argument to the  switch() is used directly to calculate the index into the 
jump table with one machine instruction. 

• Each of the cases have been transformed into an exit point (actually, the compiler 
has deemed it would be better to move the exit sequences up the parser tree). 

In case the number of cases is big enough but the list of values has “gaps” (i.e. some values 
are missing and are treated as the  default case), the jump list will still be formed, but 
with the address for the default case will be used for those entries. There is an internal 
threshold calculation in the compiler that changes if and how the jump list is generated 
with respect to the number of cases and the number of sequential values that the compiler 
can spot in the list of cases.

5


	1.Introduction
	1.1.The environment
	1.2.Basic code snippet

	2.Threshold of optimisation
	3.The O(1) case

